ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chimal-Juárez, Enrique"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Tau depletion diminishes vascular amyloid‐related deficits in a mouse model of cerebral amyloid angiopathy
    (Wiley, 2025) Jury-Garfe, Nur; Chimal-Juárez, Enrique; Patel, Henika; Martinez-Pinto, Jonathan; Vanderbosch, Kathryn; Mardones, Muriel D.; Perkins, Abigail; Di Prisco, Gonzalo Viana; Marambio, Yamil; Vidal, Ruben; Atwood, Brady K.; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of Medicine
    Introduction: Tau is essential for amyloid beta (Aβ)-induced synaptic and cognitive deficits in Alzheimer's disease (AD), making its downregulation a therapeutic target. Cerebral amyloid angiopathy (CAA), a major vascular contributor to cognitive decline, affects over 90% of patients with AD. This study explores the impact of tau downregulation on CAA pathogenesis. Methods: We crossed the Familial Danish Dementia mouse model (Tg-FDD), which develops vascular amyloid, with tau-null (mTau-/-) mice to generate a CAA model lacking endogenous tau (Tg-FDD/mTau-/-). Behavioral, electrophysiological, histological, and transcriptomic analyses were performed. Results: Tau depletion ameliorated motor and synaptic impairments, reduced vascular amyloid deposition, and prevented vascular damage. Tau ablation also mitigated astrocytic reactivity and neuroinflammation associated with vascular amyloid accumulation. Conclusion: These findings provide the first in vivo evidence of the beneficial effects of tau downregulation in a CAA mouse model, supporting tau reduction as a potential therapeutic strategy for patients with parenchymal and vascular amyloid deposition. Highlights: Tau ablation improves motor function and synaptic impair, reduces cerebrovascular amyloid deposits, and prevents vascular damage in a mouse model of cerebral amyloid angiopathy (CAA). Tau reduction decreases astrocytic reactivity, alters neuroinflammatory gene expression, and enhances oligodendrocyte function, suggesting a protective role against neuroinflammation in CAA. These findings highlight tau reduction as a potential therapeutic strategy to mitigate CAA-induced pathogenesis, with implications for treating patients with both parenchymal and vascular amyloid deposition.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University