- Browse by Author
Browsing by Author "Cheng, Ying-Hua"
Now showing 1 - 10 of 24
Results Per Page
Sort Options
Item A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease(Nature, 2023-07-19) Canela, Victor Hugo; Bowen, William S.; Ferreira, Ricardo Melo; Syed, Farooq; Lingeman, James E.; Sabo, Angela R.; Barwinska, Daria; Winfree, Seth; Lake, Blue B.; Cheng, Ying-Hua; Gaut, Joseph P.; Ferkowicz, Michael; LaFavers, Kaice A.; Zhang, Kun; Coe, Fredric L.; Worcester, Elaine; Jain, Sanjay; Eadon, Michael T.; Williams, James C., Jr.; El-Achkar, Tarek M.; Urology, School of MedicineKidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.Item Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease(MDPI, 2022-03-30) Collins, Kimberly S.; Eadon, Michael T.; Cheng, Ying-Hua; Barwinska, Daria; Ferreira, Ricardo Melo; McCarthy, Thomas W.; Janosevic, Danielle; Syed, Farooq; Maier, Bernhard; El-Achkar, Tarek M.; Kelly, Katherine J.; Phillips, Carrie L.; Hato, Takashi; Sutton, Timothy A.; Dagher, Pierre C.; Medicine, School of MedicineDiabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography-mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.Item Application of Laser Microdissection to Uncover Regional Transcriptomics in Human Kidney Tissue(MyJove Corporation, 2020-06-09) Barwinska, Daria; Ferkowicz, Michael J.; Cheng, Ying-Hua; Winfree, Seth; Dunn, Kenneth W.; Kelly, Katherine J.; Sutton, Timothy A.; Rovin, Brad H.; Parikh, Samir V.; Phillips, Carrie L.; Dagher, Pierre C.; El-Achkar, Tarek M.; Eadon, Michael T.; Medicine, School of MedicineGene expression analysis of human kidney tissue is an important tool to understand homeostasis and disease pathophysiology. Increasing the resolution and depth of this technology and extending it to the level of cells within the tissue is needed. Although the use of single nuclear and single cell RNA sequencing has become widespread, the expression signatures of cells obtained from tissue dissociation do not maintain spatial context. Laser microdissection (LMD) based on specific fluorescent markers would allow the isolation of specific structures and cell groups of interest with known localization, thereby enabling the acquisition of spatially-anchored transcriptomic signatures in kidney tissue. We have optimized an LMD methodology, guided by a rapid fluorescence-based stain, to isolate five distinct compartments within the human kidney and conduct subsequent RNA sequencing from valuable human kidney tissue specimens. We also present quality control parameters to enable the assessment of adequacy of the collected specimens. The workflow outlined in this manuscript shows the feasibility of this approach to isolate sub-segmental transcriptomic signatures with high confidence. The methodological approach presented here may also be applied to other tissue types with substitution of relevant antibody markers.Item C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis(Wiley, 2016-04) Meijome, Tomas E.; Baughman, Jenna T.; Hooker, R. Adam; Cheng, Ying-Hua; Ciovacco, Wendy A.; Balamohan, Sanjeev M.; Srinivasan, Trishya L.; Chitteti, Brahmananda R.; Eleniste, Pierre P.; Horowitz, Mark C.; Srour, Edward F.; Bruzzaniti, Angela; Fuchs, Robyn K.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineC-Mpl is the receptor for thrombopoietin (TPO), the main megakaryocyte (MK) growth factor, and c-Mpl is believed to be expressed on cells of the hematopoietic lineage. As MKs have been shown to enhance bone formation, it may be expected that mice in which c-Mpl was globally knocked out (c-Mpl(-/-) mice) would have decreased bone mass because they have fewer MKs. Instead, c-Mpl(-/-) mice have a higher bone mass than WT controls. Using c-Mpl(-/-) mice we investigated the basis for this discrepancy and discovered that c-Mpl is expressed on both osteoblasts (OBs) and osteoclasts (OCs), an unexpected finding that prompted us to examine further how c-Mpl regulates bone. Static and dynamic bone histomorphometry parameters suggest that c-Mpl deficiency results in a net gain in bone volume with increases in OBs and OCs. In vitro, a higher percentage of c-Mpl(-/-) OBs were in active phases of the cell cycle, leading to an increased number of OBs. No difference in OB differentiation was observed in vitro as examined by real-time PCR and functional assays. In co-culture systems, which allow for the interaction between OBs and OC progenitors, c-Mpl(-/-) OBs enhanced osteoclastogenesis. Two of the major signaling pathways by which OBs regulate osteoclastogenesis, MCSF/OPG/RANKL and EphrinB2-EphB2/B4, were unaffected in c-Mpl(-/-) OBs. These data provide new findings for the role of MKs and c-Mpl expression in bone and may provide insight into the homeostatic regulation of bone mass as well as bone loss diseases such as osteoporosis.Item Clinical, histopathologic and molecular features of idiopathic and diabetic nodular mesangial sclerosis in humans(Oxford University Press, 2021) Eadon, Michael T.; Lampe, Sam; Baig, Mirza M.; Collins, Kimberly S.; Ferreira, Ricardo Melo; Mang, Henry; Cheng, Ying-Hua; Barwinska, Daria; El-Achkar, Tarek M.; Schwantes-An, Tae-Hwi; Winfree, Seth; Temm, Constance J.; Ferkowicz, Michael J.; Dunn, Kenneth W.; Kelly, Katherine J.; Sutton, Timothy A.; Moe, Sharon M.; Moorthi, Ranjani N.; Phillips, Carrie L.; Dagher, Pierre C.; Medicine, School of MedicineBackground: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN). Methods: All renal biopsy reports accessioned at Indiana University Health from 2001 to 2016 were reviewed to identify 48 ING cases. Clinical and histopathologic features were compared between individuals with ING and DN (n = 751). Glomeruli of ING (n = 5), DN (n = 18) and reference (REF) nephrectomy (n = 9) samples were isolated by laser microdissection and RNA was sequenced. Immunohistochemistry of proline-rich 36 (PRR36) protein was performed. Results: ING subjects were frequently hypertensive (95.8%) with a smoking history (66.7%). ING subjects were older, had lower proteinuria and had less hyaline arteriolosclerosis than DN subjects. Butanoate metabolism was an enriched pathway in ING samples compared with either REF or DN samples. The top differentially expressed gene, PRR36, had increased expression in glomeruli 248-fold [false discovery rate (FDR) P = 5.93 × 10-6] compared with the REF and increased 109-fold (FDR P = 1.85 × 10-6) compared with DN samples. Immunohistochemistry revealed a reduced proportion of cells with perinuclear reaction in ING samples as compared to DN. Conclusions: Despite similar clinical and histopathologic characteristics in ING and DN, the uncovered transcriptomic signature suggests that ING has distinct molecular features from nodular DN. Further study is warranted to understand these relationships.Item FUSION: A web-based application for in-depth exploration of multi-omics data with brightfield histology(bioRxiv, 2024-08-22) Border, Samuel; Ferreira, Ricardo Melo; Lucarelli, Nicholas; Manthey, David; Kumar, Suhas; Paul, Anindya; Mimar, Sayat; Naglah, Ahmed; Cheng, Ying-Hua; Barisoni, Laura; Ray, Jessica; Strekalova, Yulia; Rosenberg, Avi Z.; Tomaszewski, John E.; Hodgin, Jeffrey B.; HuBMAP consortium; El-Achkar, Tarek M.; Jain, Sanjay; Eadon, Michael T.; Sarder, Pinaki; Medicine, School of MedicineSpatial -OMICS technologies facilitate the interrogation of molecular profiles in the context of the underlying histopathology and tissue microenvironment. Paired analysis of histopathology and molecular data can provide pathologists with otherwise unobtainable insights into biological mechanisms. To connect the disparate molecular and histopathologic features into a single workspace, we developed FUSION (Functional Unit State IdentificatiON in WSIs [Whole Slide Images]), a web-based tool that provides users with a broad array of visualization and analytical tools including deep learning-based algorithms for in-depth interrogation of spatial -OMICS datasets and their associated high-resolution histology images. FUSION enables end-to-end analysis of functional tissue units (FTUs), automatically aggregating underlying molecular data to provide a histopathology-based medium for analyzing healthy and altered cell states and driving new discoveries using "pathomic" features. We demonstrate FUSION using 10x Visium spatial transcriptomics (ST) data from both formalin-fixed paraffin embedded (FFPE) and frozen prepared datasets consisting of healthy and diseased tissue. Through several use-cases, we demonstrate how users can identify spatial linkages between quantitative pathomics, qualitative image characteristics, and spatial --omics.Item GATA-1 deficiency rescues trabecular but not cortical bone in OPG deficient mice(Wiley Blackwell (John Wiley & Sons), 2015-04) Meijome, Tomas E.; Hooker, R. Adam; Cheng, Ying-Hua; Walker, Whitney; Horowitz, Mark C.; Fuchs, Robyn K.; Kacena, Melissa A.; Department of Surgery, IU School of MedicineGATA-1(low/low) mice have an increase in megakaryocytes (MKs) and trabecular bone. The latter is thought to result from MKs directly stimulating osteoblastic bone formation while simultaneously inhibiting osteoclastogenesis. Osteoprotegerin (OPG) is known to inhibit osteoclastogenesis and OPG(-/-) mice have reduced trabecular and cortical bone due to increased osteoclastogenesis. Interestingly, GATA-1(low/low) mice have increased OPG levels. Here, we sought to determine whether GATA-1 knockdown in OPG(-/-) mice could rescue the observed osteoporotic bone phenotype. GATA-1(low/low) mice were bred with OPG(-/-) mice and bone phenotype assessed. GATA-1(low/low) × OPG(-/-) mice have increased cortical bone porosity, similar to OPG(-/-) mice. Both OPG(-/-) and GATA-1(low/low) × OPG(-/-) mice, were found to have increased osteoclasts localized to cortical bone, possibly producing the observed elevated porosity. Biomechanical assessment indicates that OPG(-/-) and GATA-1(low/low) × OPG(-/-) femurs are weaker and less stiff than C57BL/6 or GATA-1(low/low) femurs. Notably, GATA-1(low/low) × OPG(-/-) mice had trabecular bone parameters that were not different from C57BL/6 values, suggesting that GATA-1 deficiency can partially rescue the trabecular bone loss observed with OPG deficiency. The fact that GATA-1 deficiency appears to be able to partially rescue the trabecular, but not the cortical bone phenotype suggests that MKs can locally enhance trabecular bone volume, but that MK secreted factors cannot access cortical bone sufficiently to inhibit osteoclastogenesis or that OPG itself is required to inhibit osteoclastogenesis in cortical bone.Item Genetic Variants Contributing to Colistin Cytotoxicity: Identification of TGIF1 and HOXD10 Using a Population Genomics Approach(MDPI, 2017-03-18) Eadon, Michael T.; Hause, Ronald J.; Stark, Amy L.; Cheng, Ying-Hua; Wheeler, Heather E.; Burgess, Kimberly S.; Benson, Eric A.; Cunningham, Patrick N.; Bacallao, Robert L.; Dagher, Pierre C.; Skaar, Todd C.; Dolan, M. Eileen; Medicine, School of MedicineColistin sulfate (polymixin E) is an antibiotic prescribed with increasing frequency for severe Gram-negative bacterial infections. As nephrotoxicity is a common side effect, the discovery of pharmacogenomic markers associated with toxicity would benefit the utility of this drug. Our objective was to identify genetic markers of colistin cytotoxicity that were also associated with expression of key proteins using an unbiased, whole genome approach and further evaluate the functional significance in renal cell lines. To this end, we employed International HapMap lymphoblastoid cell lines (LCLs) of Yoruban ancestry with known genetic information to perform a genome-wide association study (GWAS) with cellular sensitivity to colistin. Further association studies revealed that single nucleotide polymorphisms (SNPs) associated with gene expression and protein expression were significantly enriched in SNPs associated with cytotoxicity (p ≤ 0.001 for gene and p = 0.015 for protein expression). The most highly associated SNP, chr18:3417240 (p = 6.49 × 10−8), was nominally a cis-expression quantitative trait locus (eQTL) of the gene TGIF1 (transforming growth factor β (TGFβ)-induced factor-1; p = 0.021) and was associated with expression of the protein HOXD10 (homeobox protein D10; p = 7.17 × 10−5). To demonstrate functional relevance in a murine colistin nephrotoxicity model, HOXD10 immunohistochemistry revealed upregulated protein expression independent of mRNA expression in response to colistin administration. Knockdown of TGIF1 resulted in decreased protein expression of HOXD10 and increased resistance to colistin cytotoxicity. Furthermore, knockdown of HOXD10 in renal cells also resulted in increased resistance to colistin cytotoxicity, supporting the physiological relevance of the initial genomic associations.Item In Vivo siRNA Delivery and Rebound of Renal LRP2 in Mice(Hindawi Publishing Corporation, 2017) Eadon, Michael T.; Cheng, Ying-Hua; Hato, Takashi; Benson, Eric A.; Ipe, Joseph; Collins, Kimberly S.; De Luca, Thomas; El-Achkar, Tarek M.; Bacallao, Robert L.; Skaar, Todd C.; Dagher, Pierre C.; Medicine, School of MedicinesiRNA stabilized for in vivo applications is filtered and reabsorbed in the renal proximal tubule (PT), reducing mRNA expression transiently. Prior siRNA efforts have successfully prevented upregulation of mRNA in response to injury. We proposed reducing constitutive gene and protein expression of LRP2 (megalin) in order to understand its molecular regulation in mice. Using siRNA targeting mouse LRP2 (siLRP2), reduction of LRP2 mRNA expression was compared to scrambled siRNA (siSCR) in mouse PT cells. Mice received siLRP2 administration optimized for dose, administration site, carrier solution, administration frequency, and administration duration. Kidney cortex was collected upon sacrifice. Renal gene and protein expression were compared by qRT-PCR, immunoblot, and immunohistochemistry (IHC). Compared to siSCR, siLRP2 reduced mRNA expression in PT cells to 16.6% ± 0.6%. In mouse kidney cortex, siLRP2 reduced mRNA expression to 74.8 ± 6.3% 3 h and 70.1 ± 6.3% 6 h after administration. mRNA expression rebounded at 12 h (160.6 ± 11.2%). No megalin renal protein expression reduction was observed by immunoblot or IHC, even after serial twice daily dosing for 3.5 days. Megalin is a constitutively expressed protein. Although LRP2 renal mRNA expression reduction was achieved, siRNA remains a costly and inefficient intervention to reduce in vivo megalin protein expression.Item Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification(Wiley, 2018) Williams, Justin N.; Kambrath, Anuradha Valiya; Patel, Roshni B.; Kang, Kyung Shin; Mével, Elsa; Li, Yong; Cheng, Ying-Hua; Pucylowski, Austin J.; Hassert, Mariah A.; Voor, Michael J.; Kacena, Melissa A.; Thompson, William R.; Warden, Stuart J.; Burr, David B.; Allen, Matthew R.; Robling, Alexander G.; Sankar, Uma; Anatomy and Cell Biology, School of MedicineApproximately 10% of all bone fractures do not heal, resulting in patient morbidity and healthcare costs. However, no pharmacological treatments are currently available to promote efficient bone healing. Inhibition of Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) reverses age-associated loss of trabecular and cortical bone volume and strength in mice. In the current study, we investigated the role of CaMKK2 in bone fracture healing and show that its pharmacological inhibition using STO-609 accelerates early cellular and molecular events associated with endochondral ossification, resulting in a more rapid and efficient healing of the fracture. Within 7 days postfracture, treatment with STO-609 resulted in enhanced Indian hedgehog signaling, paired-related homeobox (PRX1)-positive mesenchymal stem cell (MSC) recruitment, and chondrocyte differentiation and hypertrophy, along with elevated expression of osterix, vascular endothelial growth factor, and type 1 collagen at the fracture callus. Early deposition of primary bone by osteoblasts resulted in STO-609–treated mice possessing significantly higher callus bone volume by 14 days following fracture. Subsequent rapid maturation of the bone matrix bestowed fractured bones in STO-609–treated animals with significantly higher torsional strength and stiffness by 28 days postinjury, indicating accelerated healing of the fracture. Previous studies indicate that fixed and closed femoral fractures in the mice take 35 days to fully heal without treatment. Therefore, our data suggest that STO-609 potentiates a 20% acceleration of the bone healing process. Moreover, inhibiting CaMKK2 also imparted higher mechanical strength and stiffness at the contralateral cortical bone within 4 weeks of treatment. Taken together, the data presented here underscore the therapeutic potential of targeting CaMKK2 to promote efficacious and rapid healing of bone fractures and as a mechanism to strengthen normal bones.
- «
- 1 (current)
- 2
- 3
- »