- Browse by Author
Browsing by Author "Chen, Zizhong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Correcting soft errors online in fast fourier transform(ACM, 2017) Liang, Xin; Chen, Jieyang; Tao, Dingwen; Li, Sihuan; Wu, Panruo; Li, Hongbo; Ouyang, Kaiming; Liu, Yuanlai; Song, Fengguang; Chen, Zizhong; Computer and Information Science, School of ScienceWhile many algorithm-based fault tolerance (ABFT) schemes have been proposed to detect soft errors offline in the fast Fourier transform (FFT) after computation finishes, none of the existing ABFT schemes detect soft errors online before the computation finishes. This paper presents an online ABFT scheme for FFT so that soft errors can be detected online and the corrupted computation can be terminated in a much more timely manner. We also extend our scheme to tolerate both arithmetic errors and memory errors, develop strategies to reduce its fault tolerance overhead and improve its numerical stability and fault coverage, and finally incorporate it into the widely used FFTW library - one of the today's fastest FFT software implementations. Experimental results demonstrate that: (1) the proposed online ABFT scheme introduces much lower overhead than the existing offline ABFT schemes; (2) it detects errors in a much more timely manner; and (3) it also has higher numerical stability and better fault coverage.Item Performance analysis and optimization of in-situ integration of simulation with data analysis: zipping applications up(ACM, 2018-06) Fu, Yuankun; Li, Feng; Song, Fengguang; Chen, Zizhong; Computer and Information Science, School of ScienceThis paper targets an important class of applications that requires combining HPC simulations with data analysis for online or real-time scientific discovery. We use the state-of-the-art parallel-IO and data-staging libraries to build simulation-time data analysis workflows, and conduct performance analysis with real-world applications of computational fluid dynamics (CFD) simulations and molecular dynamics (MD) simulations. Driven by in-depth performance inefficiency analysis, we design an end-to-end application-level approach to eliminating the interlocks and synchronizations existent in the present methods. Our new approach employs both task parallelism and pipeline parallelism to reduce synchronizations effectively. In addition, we design a fully asynchronous, fine-grain, and pipelining runtime system, which is named Zipper. Zipper is a multi-threaded distributed runtime system and executes in a layer below the simulation and analysis applications. To further reduce the simulation application's stall time and enhance the data transfer performance, we design a concurrent data transfer optimization that uses both HPC network and parallel file system for improved bandwidth. The scalability of the Zipper system has been verified by a performance model and various empirical large scale experiments. The experimental results on an Intel multicore cluster as well as a Knight Landing HPC system demonstrate that the Zipper based approach can outperform the fastest state-of-the-art I/O transport library by up to 220% using 13,056 processor cores.Item suCAQR: A Simplified Communication-Avoiding QR Factorization Solver Using the TBLAS Framework(IEEE, 2016-12) Zheng, Weijian; Song, Fengguang; Lin, Lan; Chen, Zizhong; Computer and Information Science, School of ScienceThe scope of this paper is to design and implement a scalable QR factorization solver that can deliver the fastest performance for tall and skinny matrices and square matrices on modern supercomputers. The new solver, named scalable universal communication-avoiding QR factorization (suCAQR), introduces a simplified and tuning-less way to realize the communication-avoiding QR factorization algorithm to support matrices of any shapes. The software design includes a mixed usage of physical and logical data layouts, a simplified method of dynamic-root binary-tree reduction, and a dynamic dataflow implementation. Compared with the existing communication avoiding QR factorization implementations, suCAQR has the benefits of being simpler, more general, and more efficient. By balancing the degree of parallelism and the proportion of faster computational kernels, it is able to achieve scalable performance on clusters of multicore nodes. The software essentially combines the strengths of both synchronization-reducing approach and communication-avoiding approach to achieve high performance. Based on the experimental results using 1,024 CPU cores, suCAQR is faster than DPLASMA by up to 30%, and faster than ScaLAPACK by up to 30 times.