- Browse by Author
Browsing by Author "Chen, Zhongxue"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Advances in translational bioinformatics facilitate revealing the landscape of complex disease mechanisms(Springer (Biomed Central Ltd.), 2014) Yang, Jack Y.; Dunker, A. Keith; Liu, Jun S.; Qin, Xiang; Arabnia, Hamid R.; Yang, William; Niemierko, Andrzej; Chen, Zhongxue; Luo, Zuojie; Wang, Liangjiang; Liu, Yunlong; Xu, Dong; Deng, Youping; Tong, Weida; Yang, Mary Qu; Department of Biochemistry and Molecular Biology, IU School of MedicineAdvances of high-throughput technologies have rapidly produced more and more data from DNAs and RNAs to proteins, especially large volumes of genome-scale data. However, connection of the genomic information to cellular functions and biological behaviours relies on the development of effective approaches at higher systems level. In particular, advances in RNA-Seq technology has helped the studies of transcriptome, RNA expressed from the genome, while systems biology on the other hand provides more comprehensive pictures, from which genes and proteins actively interact to lead to cellular behaviours and physiological phenotypes. As biological interactions mediate many biological processes that are essential for cellular function or disease development, it is important to systematically identify genomic information including genetic mutations from GWAS (genome-wide association study), differentially expressed genes, bidirectional promoters, intrinsic disordered proteins (IDP) and protein interactions to gain deep insights into the underlying mechanisms of gene regulations and networks. Furthermore, bidirectional promoters can co-regulate many biological pathways, where the roles of bidirectional promoters can be studied systematically for identifying co-regulating genes at interactive network level. Combining information from different but related studies can ultimately help revealing the landscape of molecular mechanisms underlying complex diseases such as cancer.Item Association Between Proteomic Blood Biomarkers and DTI/NODDI Metrics in Adolescent Football Players: A Pilot Study(Frontiers Media, 2020-11-16) Kawata, Keisuke; Steinfeldt, Jesse A.; Huibregtse, Megan E.; Nowak, Madeleine K.; Macy, Jonathan T.; Kercher, Kyle; Rettke, Devin J.; Shin, Andrea; Chen, Zhongxue; Ejima, Keisuke; Newman, Sharlene D.; Cheng, Hu; Medicine, School of MedicineWhile neuroimaging and blood biomarker have been two of the most active areas of research in the neurotrauma community, these fields rarely intersect to delineate subconcussive brain injury. The aim of the study was to examine the association between diffusion MRI techniques [diffusion tensor imaging (DTI) and neurite orientation/dispersion density imaging (NODDI)] and brain-injury blood biomarker levels [tau, neurofilament-light (NfL), glial-fibrillary-acidic-protein (GFAP)] in high-school football players at their baseline, aiming to detect cumulative neuronal damage from prior seasons. Twenty-five football players were enrolled in the study. MRI measures and blood samples were obtained during preseason data collection. The whole-brain, tract-based spatial statistics was conducted for six diffusion metrics: fractional anisotropy (FA), mean diffusivity (MD), axial/radial diffusivity (AD, RD), neurite density index (NDI), and orientation dispersion index (ODI). Five players were ineligible for MRIs, and three serum samples were excluded due to hemolysis, resulting in 17 completed set of diffusion metrics and blood biomarker levels for association analysis. Our permutation-based regression model revealed that serum tau levels were significantly associated with MD and NDI in various axonal tracts; specifically, elevated serum tau levels correlated to elevated MD (p = 0.0044) and reduced NDI (p = 0.016) in the corpus callosum and surrounding white matter tracts (e.g., longitudinal fasciculus). Additionally, there was a negative association between NfL and ODI in the focal area of the longitudinal fasciculus. Our data suggest that high school football players may develop axonal microstructural abnormality in the corpus callosum and surrounding white matter tracts, such as longitudinal fasciculus. A future study is warranted to determine the longitudinal multimodal relationship in response to repetitive exposure to sports-related head impacts.Item CMAX3: A Robust Statistical Test for Genetic Association Accounting for Covariates(MDPI, 2021) Chen, Zhongxue; Zang, Yong; Biostatistics, School of Public HealthThe additive genetic model as implemented in logistic regression has been widely used in genome-wide association studies (GWASs) for binary outcomes. Unfortunately, for many complex diseases, the underlying genetic models are generally unknown and a mis-specification of the genetic model can result in a substantial loss of power. To address this issue, the MAX3 test (the maximum of three separate test statistics) has been proposed as a robust test that performs plausibly regardless of the underlying genetic model. However, the original implementation of MAX3 utilizes the trend test so it cannot adjust for any covariates such as age and gender. This drawback has significantly limited the application of the MAX3 in GWASs, as covariates account for a considerable amount of variability in these disorders. In this paper, we extended the MAX3 and proposed the CMAX3 (covariate-adjusted MAX3) based on logistic regression. The proposed test yielded a similar robust efficiency as the original MAX3 while easily adjusting for any covariate based on the likelihood framework. The asymptotic formula to calculate the p-value of the proposed test was also developed in this paper. The simulation results showed that the proposed test performed desirably under both the null and alternative hypotheses. For the purpose of illustration, we applied the proposed test to re-analyze a case-control GWAS dataset from the Collaborative Studies on Genetics of Alcoholism (COGA). The R code to implement the proposed test is also introduced in this paper and is available for free downloadItem The emerging genomics and systems biology research lead to systems genomics studies(Springer (Biomed Central Ltd.), 2014) Yang, Mary Qu; Yoshigoe, Kenji; Yang, William; Tong, Weida; Qin, Xiang; Dunker, A. Keith; Chen, Zhongxue; Arbania, Hamid R.; Liu, Jun S.; Niemierko, Andrzej; Yang, Jack Y.; Department of Biochemistry and Molecular Biology, IU School of MedicineSynergistically integrating multi-layer genomic data at systems level not only can lead to deeper insights into the molecular mechanisms related to disease initiation and progression, but also can guide pathway-based biomarker and drug target identification. With the advent of high-throughput next-generation sequencing technologies, sequencing both DNA and RNA has generated multi-layer genomic data that can provide DNA polymorphism, non-coding RNA, messenger RNA, gene expression, isoform and alternative splicing information. Systems biology on the other hand studies complex biological systems, particularly systematic study of complex molecular interactions within specific cells or organisms. Genomics and molecular systems biology can be merged into the study of genomic profiles and implicated biological functions at cellular or organism level. The prospectively emerging field can be referred to as systems genomics or genomic systems biology. The Mid-South Bioinformatics Centre (MBC) and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and University of Arkansas for Medical Sciences are particularly interested in promoting education and research advancement in this prospectively emerging field. Based on past investigations and research outcomes, MBC is further utilizing differential gene and isoform/exon expression from RNA-seq and co-regulation from the ChiP-seq specific for different phenotypes in combination with protein-protein interactions, and protein-DNA interactions to construct high-level gene networks for an integrative genome-phoneme investigation at systems biology level.Item Identification of genes and pathways involved in kidney renal clear cell carcinoma(Springer (Biomed Central Ltd.), 2014) Yang, William; Yoshigoe, Kenji; Qin, Xiang; Liu, Jun S.; Yang, Jack Y.; Niemierko, Andrzej; Deng, Youping; Liu, Yunlong; Dunker, A. Keith; Chen, Zhongxue; Wang, Liangjiang; Xu, Dong; Arabnia, Hamid R.; Tong, Weida; Yang, Mary Qu; Department of Medical and Molecular Genetics, IU School of MedicineBACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is one of fatal genitourinary diseases and accounts for most malignant kidney tumours. KIRC has been shown resistance to radiotherapy and chemotherapy. Like many types of cancers, there is no curative treatment for metastatic KIRC. Using advanced sequencing technologies, The Cancer Genome Atlas (TCGA) project of NIH/NCI-NHGRI has produced large-scale sequencing data, which provide unprecedented opportunities to reveal new molecular mechanisms of cancer. We combined differentially expressed genes, pathways and network analyses to gain new insights into the underlying molecular mechanisms of the disease development. RESULTS: Followed by the experimental design for obtaining significant genes and pathways, comprehensive analysis of 537 KIRC patients' sequencing data provided by TCGA was performed. Differentially expressed genes were obtained from the RNA-Seq data. Pathway and network analyses were performed. We identified 186 differentially expressed genes with significant p-value and large fold changes (P < 0.01, |log(FC)| > 5). The study not only confirmed a number of identified differentially expressed genes in literature reports, but also provided new findings. We performed hierarchical clustering analysis utilizing the whole genome-wide gene expressions and differentially expressed genes that were identified in this study. We revealed distinct groups of differentially expressed genes that can aid to the identification of subtypes of the cancer. The hierarchical clustering analysis based on gene expression profile and differentially expressed genes suggested four subtypes of the cancer. We found enriched distinct Gene Ontology (GO) terms associated with these groups of genes. Based on these findings, we built a support vector machine based supervised-learning classifier to predict unknown samples, and the classifier achieved high accuracy and robust classification results. In addition, we identified a number of pathways (P < 0.04) that were significantly influenced by the disease. We found that some of the identified pathways have been implicated in cancers from literatures, while others have not been reported in the cancer before. The network analysis leads to the identification of significantly disrupted pathways and associated genes involved in the disease development. Furthermore, this study can provide a viable alternative in identifying effective drug targets. CONCLUSIONS: Our study identified a set of differentially expressed genes and pathways in kidney renal clear cell carcinoma, and represents a comprehensive computational approach to analysis large-scale next-generation sequencing data. The pathway and network analyses suggested that information from distinctly expressed genes can be utilized in the identification of aberrant upstream regulators. Identification of distinctly expressed genes and altered pathways are important in effective biomarker identification for early cancer diagnosis and treatment planning. Combining differentially expressed genes with pathway and network analyses using intelligent computational approaches provide an unprecedented opportunity to identify upstream disease causal genes and effective drug targets.