- Browse by Author
Browsing by Author "Chen, Yinyin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Assessment of intramyocardial hemorrhage with dark-blood T2*-weighted cardiovascular magnetic resonance(Elsevier, 2021-07-15) Guan, Xingmin; Chen, Yinyin; Yang, Hsin‑Jung; Zhang, Xinheng; Ren, Daoyuan; Sykes, Jane; Butler, John; Han, Hui; Zeng, Mengsu; Prato, Frank S.; Dharmakumar, Rohan; Medicine, School of MedicineBackground: Intramyocardial hemorrhage (IMH) within myocardial infarction (MI) is associated with major adverse cardiovascular events. Bright-blood T2*-based cardiovascular magnetic resonance (CMR) has emerged as the reference standard for non-invasive IMH detection. Despite this, the dark-blood T2*-based CMR is becoming interchangeably used with bright-blood T2*-weighted CMR in both clinical and preclinical settings for IMH detection. To date however, the relative merits of dark-blood T2*-weighted with respect to bright-blood T2*-weighted CMR for IMH characterization has not been studied. We investigated the diagnostic capacity of dark-blood T2*-weighted CMR against bright-blood T2*-weighted CMR for IMH characterization in clinical and preclinical settings. Materials and methods: Hemorrhagic MI patients (n = 20) and canines (n = 11) were imaged in the acute and chronic phases at 1.5 and 3 T with dark- and bright-blood T2*-weighted CMR. Imaging characteristics (Relative signal-to-noise (SNR), Relative contrast-to-noise (CNR), IMH Extent) and diagnostic performance (sensitivity, specificity, accuracy, area-under-the-curve, and inter-observer variability) of dark-blood T2*-weighted CMR for IMH characterization were assessed relative to bright-blood T2*-weighted CMR. Results: At both clinical and preclinical settings, compared to bright-blood T2*-weighted CMR, dark-blood T2*-weighted images had significantly lower SNR, CNR and reduced IMH extent (all p < 0.05). Dark-blood T2*-weighted CMR also demonstrated weaker sensitivity, specificity, accuracy, and inter-observer variability compared to bright-blood T2*-weighted CMR (all p < 0.05). These observations were consistent across infarct age and imaging field strengths. Conclusion: While IMH can be visible on dark-blood T2*-weighted CMR, the overall conspicuity of IMH is significantly reduced compared to that observed in bright-blood T2*-weighted images, across infarct age in clinical and preclinical settings at 1.5 and 3 T. Hence, bright-blood T2*-weighted CMR would be preferable for clinical use since dark-blood T2*-weighted CMR carries the potential to misclassify hemorrhagic MIs as non-hemorrhagic MIs.Item Enabling Reliable Visual Detection of Chronic Myocardial Infarction with Native T1 Cardiac MRI Using Data-Driven Native Contrast Mapping(Radiological Society of North America, 2024) Youssef, Khalid; Zhang, Xinheng; Yoosefian, Ghazal; Chen, Yinyin; Chan, Shing Fai; Yang, Hsin-Jung; Vora, Keyur; Howarth, Andrew; Kumar, Andreas; Sharif, Behzad; Dharmakumar, Rohan; Medicine, School of MedicinePurpose: To investigate whether infarct-to-remote myocardial contrast can be optimized by replacing generic fitting algorithms used to obtain native T1 maps with a data-driven machine learning pixel-wise approach in chronic reperfused infarct in a canine model. Materials and Methods: A controlled large animal model (24 canines, equal male and female animals) of chronic myocardial infarction with histologic evidence of heterogeneous infarct tissue composition was studied. Unsupervised clustering techniques using self-organizing maps and t-distributed stochastic neighbor embedding were used to analyze and visualize native T1-weighted pixel-intensity patterns. Deep neural network models were trained to map pixel-intensity patterns from native T1-weighted image series to corresponding pixels on late gadolinium enhancement (LGE) images, yielding visually enhanced noncontrast maps, a process referred to as data-driven native mapping (DNM). Pearson correlation coefficients and Bland-Altman analyses were used to compare findings from the DNM approach against standard T1 maps. Results: Native T1-weighted images exhibited distinct pixel-intensity patterns between infarcted and remote territories. Granular pattern visualization revealed higher infarct-to-remote cluster separability with LGE labeling as compared with native T1 maps. Apparent contrast-to-noise ratio from DNM (mean, 15.01 ± 2.88 [SD]) was significantly different from native T1 maps (5.64 ± 1.58; P < .001) but similar to LGE contrast-to-noise ratio (15.51 ± 2.43; P = .40). Infarcted areas based on LGE were more strongly correlated with DNM compared with native T1 maps (R2 = 0.71 for native T1 maps vs LGE; R2 = 0.85 for DNM vs LGE; P < .001). Conclusion: Native T1-weighted pixels carry information that can be extracted with the proposed DNM approach to maximize image contrast between infarct and remote territories for enhanced visualization of chronic infarct territories.Item Intramyocardial hemorrhage drives fatty degeneration of infarcted myocardium(Springer Nature, 2022-10-27) Cokic, Ivan; Chan, Shing Fai; Guan, Xingmin; Nair, Anand R.; Yang, Hsin-Jung; Liu, Ting; Chen, Yinyin; Hernando, Diego; Sykes, Jane; Tang, Richard; Butler, John; Dohnalkova, Alice; Kovarik, Libor; Finney, Robert; Kali, Avinash; Sharif, Behzad; Bouchard, Louis S.; Gupta, Rajesh; Krishnam, Mayil Singaram; Vora, Keyur; Tamarappoo, Balaji; Howarth, Andrew G.; Kumar, Andreas; Francis, Joseph; Reeder, Scott B.; Wood, John C.; Prato, Frank S.; Dharmakumar, Rohan; Medicine, School of MedicineSudden blockage of arteries supplying the heart muscle contributes to millions of heart attacks (myocardial infarction, MI) around the world. Although re-opening these arteries (reperfusion) saves MI patients from immediate death, approximately 50% of these patients go on to develop chronic heart failure (CHF) and die within a 5-year period; however, why some patients accelerate towards CHF while others do not remains unclear. Here we show, using large animal models of reperfused MI, that intramyocardial hemorrhage - the most damaging form of reperfusion injury (evident in nearly 40% of reperfused ST-elevation MI patients) - drives delayed infarct healing and is centrally responsible for continuous fatty degeneration of the infarcted myocardium contributing to adverse remodeling of the heart. Specifically, we show that the fatty degeneration of the hemorrhagic MI zone stems from iron-induced macrophage activation, lipid peroxidation, foam cell formation, ceroid production, foam cell apoptosis and iron recycling. We also demonstrate that timely reduction of iron within the hemorrhagic MI zone reduces fatty infiltration and directs the heart towards favorable remodeling. Collectively, our findings elucidate why some, but not all, MIs are destined to CHF and help define a potential therapeutic strategy to mitigate post-MI CHF independent of MI size.