ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chen, Xueying"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Old vs. New Local Ancestry Inference in HCHS/SOL: A Comparative Study
    (bioRxiv, 2025-02-08) Chen, Xueying; Wang, Hao; Broce, Iris; Dale, Anders; Yu, Bing; Zhou, Laura Y.; Li, Xihao; Argos, Maria; Daviglus, Martha L.; Cai, Jianwen; Franceschini, Nora; Sofer, Tamar; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Hispanic/Latino populations are admixed, with genetic contributions from multiple ancestral populations. Studies of genetic association in these admixed populations often use methods such as admixture mapping, which relies on inferred counts of "local" ancestry, i.e., of the source ancestral population at a locus. Local ancestries are inferred using external reference panels that represent ancestral populations, making the choice of inference method and reference panel critical. This study used a dataset of Hispanic/Latino individuals from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) to evaluate the "old" local ancestry inference performed using the state-of-the-art inference method, RFMix, alongside "new" inferences performed using Fast Local Ancestry Estimation (FLARE), which also used an updated reference panel. We compared their performance in terms of global and local ancestry correlations, as well as admixture mapping-based associations. Overall, the old RFMix and new FLARE inferences were highly similar for both global and local ancestries, with FLARE-inferred datasets yielding admixture mapping results consistent with those computed from RFMix. However, in some genomic regions the old and new local ancestries have relatively lower correlations (Pearson R < 0.9). Most of these genomic regions (86.42%) were mapped to either ENCODE blacklist regions, or to gene clusters, compared to 7.67% of randomly-matched regions with high correlations (Pearson R > 0.97) between old and new local ancestries.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University