- Browse by Author
Browsing by Author "Chen, Xiang"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Ballistic-diffusive phonon heat transport across grain boundaries(Elsevier, 2017-09) Chen, Xiang; Li, Weixuan; Xiong, Liming; Li, Yang; Yang, Shengfang; Zheng, Zexi; McDowell, David L.; Chen, Youping; Mechanical Engineering, School of Engineering and TechnologyThe propagation of a heat pulse in a single crystal and across grain boundaries (GBs) is simulated using a concurrent atomistic-continuum method furnished with a coherent phonon pulse model. With a heat pulse constructed based on a Bose-Einstein distribution of phonons, this work has reproduced the phenomenon of phonon focusing in single and polycrystalline materials. Simulation results provide visual evidence that the propagation of a heat pulse in crystalline solids with or without GBs is partially ballistic and partially diffusive, i.e., there is a co-existence of ballistic and diffusive thermal transport, with the long-wavelength phonons traveling ballistically while the short-wavelength phonons scatter with each other and travel diffusively. To gain a quantitative understanding of GB thermal resistance, the kinetic energy transmitted across GBs is monitored on the fly and the time-dependent energy transmission for each specimen is measured; the contributions of coherent and incoherent phonon transport to the energy transmission are estimated. Simulation results reveal that the presence of GBs modifies the nature of thermal transport, with the coherent long-wavelength phonons dominating the heat conduction in materials with GBs. In addition, it is found that phonon-GB interactions can result in reconstruction of GBs.Item Metabolic signaling directs the reciprocal lineage decisions of αβ and γδ T cells(American Association for the Advancement of Science, 2018-07-06) Yang, Kai; Blanco, Daniel Bastardo; Chen, Xiang; Dash, Pradyot; Neale, Geoffrey; Rosencrance, Celeste; Easton, John; Chen, Wenan; Cheng, Changde; Dhungana, Yogesh; Kc, Anil; Awad, Walid; Guo, Xi-Zhi J.; Thomas, Paul G.; Chi, Hongbo; Department of Pediatrics, School of MedicineWiring metabolic signaling circuits in thymocytes Cell differentiation is often accompanied by metabolic changes. Yang et al. report that generation of double-positive (DP) thymocytes from double-negative (DN) cells coincides with dynamic regulation of glycolytic and oxidative metabolism. Given the central role of mechanistic target of rapamycin complex 1 (mTORC1) signaling in regulating metabolic changes, they examined the role of mTORC1 pathway in thymocyte development by conditionally deleting RAPTOR, the key component of the mTORC1 complex, in thymocytes. Loss of RAPTOR impaired the DN-to-DP transition, but unexpectedly also perturbed the balance between αβ and γδ T cells and promoted the generation of γδ T cells. Their studies highlight an unappreciated role for mTORC1-dependent metabolic changes in controlling thymocyte fates. The interaction between extrinsic factors and intrinsic signal strength governs thymocyte development, but the mechanisms linking them remain elusive. We report that mechanistic target of rapamycin complex 1 (mTORC1) couples microenvironmental cues with metabolic programs to orchestrate the reciprocal development of two fundamentally distinct T cell lineages, the αβ and γδ T cells. Developing thymocytes dynamically engage metabolic programs including glycolysis and oxidative phosphorylation, as well as mTORC1 signaling. Loss of RAPTOR-mediated mTORC1 activity impairs the development of αβ T cells but promotes γδ T cell generation, associated with disrupted metabolic remodeling of oxidative and glycolytic metabolism. Mechanistically, we identify mTORC1-dependent control of reactive oxygen species production as a key metabolic signal in mediating αβ and γδ T cell development, and perturbation of redox homeostasis impinges upon thymocyte fate decisions and mTORC1-associated phenotypes. Furthermore, single-cell RNA sequencing and genetic dissection reveal that mTORC1 links developmental signals from T cell receptors and NOTCH to coordinate metabolic activity and signal strength. Our results establish mTORC1-driven metabolic signaling as a decisive factor for reciprocal αβ and γδ T cell development and provide insight into metabolic control of cell signaling and fate decisions. Development of αβ and γδ T cells requires coupling of environmental signals with metabolic and redox regulation by mTORC1. Development of αβ and γδ T cells requires coupling of environmental signals with metabolic and redox regulation by mTORC1.Item The protective role of DOT1L in UV-induced melanomagenesis(Nature Publishing Group, 2018-01-17) Zhu, Bo; Chen, Shuyang; Wang, Hongshen; Yin, Chengqian; Han, Changpeng; Peng, Cong; Liu, Zhaoqian; Wan, Lixin; Zhang, Zhang; Zhang, Jie; Lian, Christine G.; Ma, Peilin; Xu, Zhi-xiang; Prince, Sharon; Wang, Tao; Gao, Xiumei; Shi, Yujiang; Liu, Dali; Liu, Min; Wei, Wenyi; Wei, Zhi; Pan, Jingxuan; Wang, Yongjun; Xuan, Zhenyu; Hess, Jay L.; Hayward, Nicholas K.; Goding, Colin R.; Chen, Xiang; Zhou, Jun; Cui, Rutao; Pathology and Laboratory Medicine, School of MedicineThe DOT1L histone H3 lysine 79 (H3K79) methyltransferase plays an oncogenic role in MLL-rearranged leukemogenesis. Here, we demonstrate that, in contrast to MLL-rearranged leukemia, DOT1L plays a protective role in ultraviolet radiation (UVR)-induced melanoma development. Specifically, the DOT1L gene is located in a frequently deleted region and undergoes somatic mutation in human melanoma. Specific mutations functionally compromise DOT1L methyltransferase enzyme activity leading to reduced H3K79 methylation. Importantly, in the absence of DOT1L, UVR-induced DNA damage is inefficiently repaired, so that DOT1L loss promotes melanoma development in mice after exposure to UVR. Mechanistically, DOT1L facilitates DNA damage repair, with DOT1L-methylated H3K79 involvement in binding and recruiting XPC to the DNA damage site for nucleotide excision repair (NER). This study indicates that DOT1L plays a protective role in UVR-induced melanomagenesis.Item β-Lapachone promotes the recruitment and polarization of tumor-associated neutrophils (TANs) toward an antitumor (N1) phenotype in NQO1-positive cancers(Taylor & Francis, 2024-06-04) Tumbath, Soumya; Jiang, Lingxiang; Li, Xiaoguang; Zhang, Taolan; Zahid, Kashif Rafiq; Zhao, Ye; Zhou, Hao; Yin, Zhijun; Lu, Tao; Jiang, Shu; Chen, Yaomin; Chen, Xiang; Fu, Yang-Xin; Huang, Xiumei; Radiation Oncology, School of MedicineNAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. β-Lapachone (β-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between β-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that β-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with β-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of β-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. β-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-β expression and reduced TGF-β cytokine expression, along with increased CD95 and CD54 surface markers. β-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into β-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by β-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the β-Lap-induced antitumor activity against NQO1-positive murine tumors.