- Browse by Author
Browsing by Author "Chen, Rong"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Characterization of Chronic Gastritis in Lynch Syndrome Patients With Gastric Adenocarcinoma(Elmer Press, 2021-02) Saulino, David; Chen, Rong; Wang, Kai; Shen, Minqian; Zhang, Xuefeng; Westerhoff, Maria; Cheng, Jerome; Lin, Jingmei; Zhang, Xuchen; Feely, Michael; Liu, Xiuli; Pathology and Laboratory Medicine, School of MedicineBackground: Gastric cancer is one of the Lynch syndrome (LS)-associated malignancies. Previous studies have suggested that LS patients with gastric cancer also had chronic atrophic gastritis in the background mucosa, but further histologic characterization was not attempted. This study aims to understand the histologic features of background chronic gastritis in LS patients with gastric adenocarcinoma. Methods: Eleven LS-associated gastric cancer cases were collected from five institutions. Demographics and clinical features were retrieved by review of medical charts. Pathological material was reviewed for tumor location and histologic type. In addition, non-neoplastic gastric mucosa was assessed for inflammation (chronic and active), atrophy, intestinal metaplasia (IM) in the antrum and body, as well as pyloric gland metaplasia and enterochromaffin-like (ECL) cell hyperplasia in the body. Results: Eleven LS patients with gastric cancer (four male and seven female) with a mean age of 63 years (range: 23 - 83) were included. Ten (90.9%) had personal cancer histories; however none of the patients had family history of gastric cancer. Eight (72.7%) patients underwent gastrectomy and three had endoscopic resection. Nine (81.8%) patients had tumor in the fundus and/or body and two had tumor present in the antrum. Seven (63.6%) cases were intestinal type or mixed type carcinoma, and the remaining four were signet ring cell carcinoma. Eight (of 11, 72.7%) patients had chronic gastritis, five (45.4%) had atrophy, and four (36.3%) had intestinal metaplasia. Four of five patients with both antrum and body mucosa available for evaluation (80%), demonstrated body-predominant chronic gastritis. Four patients had germline MLH1 alterations and all of these patients had chronic gastritis, including one Helicobacter pylori (H. pylori) gastritis and three H. pylori-negative gastritis. Conclusions: None of LS patients with gastric cancer in our cohort had a family history of gastric cancer. Gastric adenocarcinomas in LS patients were primarily located in the fundus and/or body. Two-thirds of these tumors were of intestinal type and had a background chronic, H. pylori-negative gastritis. These results support a chronic atrophic gastritis with intestinal metaplasia-dysplasia-carcinoma sequence in LS-related gastric tumorigenesis, particularly in MLH1-mutated LS patients.Item Correction to: Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits(BioMed Central, 2019-11-05) Glicksberg, Benjamin S.; Amadori, Letizia; Akers, Nicholas K.; Sukhavasi, Katyayani; Franzén, Oscar; Li, Li; Belbin, Gillian M.; Ayers, Kristin L.; Shameer, Khader; Badgeley, Marcus A.; Johnson, Kipp W.; Readhead, Ben; Darrow, Bruce J.; Kenny, Eimear E.; Betsholtz, Christer; Ermel, Raili; Skogsberg, Josefin; Ruusalepp, Arno; Schadt, Eric E.; Dudley, Joel T.; Ren, Hongxia; Kovacic, Jason C.; Giannarelli, Chiara; Li, Shuyu D.; Björkegren, Johan L. M.; Chen, Rong; Pediatrics, School of MedicineErratum for Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits. [BMC Med Genomics. 2019]Item Current Perspectives of Neuroendocrine Regulation in Liver Fibrosis(MDPI, 2022-11-26) Li, Bowen; Wang, Hui; Zhang, Yudian; Liu, Ying; Zhou, Tiejun; Zhou, Bingru; Zhang, Ying; Chen, Rong; Xing, Juan; He, Longfei; Salinas, Jennifer Mata; Koyama, Sachiko; Meng, Fanyin; Wan, Ying; Medicine, School of MedicineLiver fibrosis is a complicated process that involves different cell types and pathological factors. The excessive accumulation of extracellular matrix (ECM) and the formation of fibrotic scar disrupt the tissue homeostasis of the liver, eventually leading to cirrhosis and even liver failure. Myofibroblasts derived from hepatic stellate cells (HSCs) contribute to the development of liver fibrosis by producing ECM in the area of injuries. It has been reported that the secretion of the neuroendocrine hormone in chronic liver injury is different from a healthy liver. Activated HSCs and cholangiocytes express specific receptors in response to these neuropeptides released from the neuroendocrine system and other neuroendocrine cells. Neuroendocrine hormones and their receptors form a complicated network that regulates hepatic inflammation, which controls the progression of liver fibrosis. This review summarizes neuroendocrine regulation in liver fibrosis from three aspects. The first part describes the mechanisms of liver fibrosis. The second part presents the neuroendocrine sources and neuroendocrine compartments in the liver. The third section discusses the effects of various neuroendocrine factors, such as substance P (SP), melatonin, as well as α-calcitonin gene-related peptide (α-CGRP), on liver fibrosis and the potential therapeutic interventions for liver fibrosis.Item The emerging role of cellular senescence in renal diseases(Wiley, 2020-02) Zhou, Bingru; Wan, Ying; Chen, Rong; Zhang, Chunmei; Li, Xuesen; Meng, Fanyin; Glaser, Shannon; Wu, Nan; Zhou, Tianhao; Li, Siwen; Francis, Heather; Alpini, Gianfranco; Zou, Ping; Medicine, School of MedicineCellular senescence represents the state of irreversible cell cycle arrest during cell division. Cellular senescence not only plays a role in diverse biological events such as embryogenesis, tissue regeneration and repair, ageing and tumour occurrence prevention, but it is also involved in many cardiovascular, renal and liver diseases through the senescence-associated secretory phenotype (SASP). This review summarizes the molecular mechanisms underlying cellular senescence and its possible effects on a variety of renal diseases. We will also discuss the therapeutic approaches based on the regulation of senescent and SASP blockade, which is considered as a promising strategy for the management of renal diseases.Item Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles(Elsevier, 2021-07) Conley, Jason M.; Sun, Hongmao; Ayers, Kristin L.; Zhu, Hu; Chen, Rong; Shen, Min; Hall, Matthew D.; Ren, Hongxia; Pediatrics, School of MedicineGPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure-function relationship studies of GPR17 signaling and metabolic disease.Item Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits(Biomed Central, 2019-07-25) Glicksberg, Benjamin S.; Amadori, Letizia; Akers, Nicholas K.; Sukhavasi, Katyayani; Franzén, Oscar; Li, Li; Belbin, Gillian M.; Akers, Kristin L.; Shameer, Khader; Badgeley, Marcus A.; Johnson, Kipp W.; Readhead, Ben; Darrow, Bruce J.; Kenny, Eimear E.; Betsholtz, Christer; Ermel, Raili; Skogsberg, Josefin; Ruusalepp, Arno; Schadt, Eric E.; Dudley, Joel T.; Ren, Hongxia; Kovacic, Jason C.; Giannarelli, Chiara; Li, Shuyu D.; Björkegren, Johan L. M.; Chen, Rong; Pediatrics, IU School of MedicineBACKGROUND: Genetic loss-of-function variants (LoFs) associated with disease traits are increasingly recognized as critical evidence for the selection of therapeutic targets. We integrated the analysis of genetic and clinical data from 10,511 individuals in the Mount Sinai BioMe Biobank to identify genes with loss-of-function variants (LoFs) significantly associated with cardiovascular disease (CVD) traits, and used RNA-sequence data of seven metabolic and vascular tissues isolated from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study for validation. We also carried out in vitro functional studies of several candidate genes, and in vivo studies of one gene. RESULTS: We identified LoFs in 433 genes significantly associated with at least one of 10 major CVD traits. Next, we used RNA-sequence data from the STARNET study to validate 115 of the 433 LoF harboring-genes in that their expression levels were concordantly associated with corresponding CVD traits. Together with the documented hepatic lipid-lowering gene, APOC3, the expression levels of six additional liver LoF-genes were positively associated with levels of plasma lipids in STARNET. Candidate LoF-genes were subjected to gene silencing in HepG2 cells with marked overall effects on cellular LDLR, levels of triglycerides and on secreted APOB100 and PCSK9. In addition, we identified novel LoFs in DGAT2 associated with lower plasma cholesterol and glucose levels in BioMe that were also confirmed in STARNET, and showed a selective DGAT2-inhibitor in C57BL/6 mice not only significantly lowered fasting glucose levels but also affected body weight. CONCLUSION: In sum, by integrating genetic and electronic medical record data, and leveraging one of the world's largest human RNA-sequence datasets (STARNET), we identified known and novel CVD-trait related genes that may serve as targets for CVD therapeutics and as such merit further investigation.Item Oncogenic KRAS Reduces Expression of FGF21 in Acinar Cells to Promote Pancreatic Tumorigenesis in Mice on a High-Fat Diet(Elsevier, 2019-11) Luo, Yongde; Yang, Yaying; Liu, Muyun; Wang, Dan; Wang, Feng; Bi, Yawei; Ji, Juntao; Li, Suyun; Liu, Yan; Chen, Rong; Huang, Haojie; Wang, Xiaojie; Swidnicka-Siergiejko, Agnieszka K.; Janowitz, Tobias; Beyaz, Semir; Wang, Guoqiang; Xu, Sulan; Bialkowska, Agnieszka B.; Luo, Catherine K.; Pin, Christoph L.; Liang, Guang; Lu, Xiongbin; Wu, Maoxin; Shroyer, Kenneth R.; Wolff, Robert A.; Plunkett, William; Ji, Baoan; Li, Zhaoshen; Li, Ellen; Li, Xiaokun; Yang, Vincent W.; Logsdon, Craig D.; Abbruzzese, James L.; Lu, Weiqin; Medical and Molecular Genetics, School of MedicineBackground & Aims Obesity is a risk factor for pancreatic cancer. In mice, a high-fat diet (HFD) and expression of oncogenic KRAS lead to development of invasive pancreatic ductal adenocarcinoma (PDAC) by unknown mechanisms. We investigated how oncogenic KRAS regulates the expression of fibroblast growth factor 21, FGF21, a metabolic regulator that prevents obesity, and the effects of recombinant human FGF21 (rhFGF21) on pancreatic tumorigenesis. Methods We performed immunohistochemical analyses of FGF21 levels in human pancreatic tissue arrays, comprising 59 PDAC specimens and 45 nontumor tissues. We also studied mice with tamoxifen-inducible expression of oncogenic KRAS in acinar cells (KrasG12D/+ mice) and fElasCreERT mice (controls). KrasG12D/+ mice were placed on an HFD or regular chow diet (control) and given injections of rhFGF21 or vehicle; pancreata were collected and analyzed by histology, immunoblots, quantitative polymerase chain reaction, and immunohistochemistry. We measured markers of inflammation in the pancreas, liver, and adipose tissue. Activity of RAS was measured based on the amount of bound guanosine triphosphate. Results Pancreatic tissues of mice expressed high levels of FGF21 compared with liver tissues. FGF21 and its receptor proteins were expressed by acinar cells. Acinar cells that expressed KrasG12D/+ had significantly lower expression of Fgf21 messenger RNA compared with acinar cells from control mice, partly due to down-regulation of PPARG expression—a transcription factor that activates Fgf21 transcription. Pancreata from KrasG12D/+ mice on a control diet and given injections of rhFGF21 had reduced pancreatic inflammation, infiltration by immune cells, and acinar-to-ductal metaplasia compared with mice given injections of vehicle. HFD-fed KrasG12D/+ mice given injections of vehicle accumulated abdominal fat, developed extensive inflammation, pancreatic cysts, and high-grade pancreatic intraepithelial neoplasias (PanINs); half the mice developed PDAC with liver metastases. HFD-fed KrasG12D/+ mice given injections of rhFGF21 had reduced accumulation of abdominal fat and pancreatic triglycerides, fewer pancreatic cysts, reduced systemic and pancreatic markers of inflammation, fewer PanINs, and longer survival—only approximately 12% of the mice developed PDACs, and none of the mice had metastases. Pancreata from HFD-fed KrasG12D/+ mice given injections of rhFGF21 had lower levels of active RAS than from mice given vehicle. Conclusions Normal acinar cells from mice and humans express high levels of FGF21. In mice, acinar expression of oncogenic KRAS significantly reduces FGF21 expression. When these mice are placed on an HFD, they develop extensive inflammation, pancreatic cysts, PanINs, and PDACs, which are reduced by injection of FGF21. FGF21 also reduces the guanosine triphosphate binding capacity of RAS. FGF21 might be used in the prevention or treatment of pancreatic cancer.