- Browse by Author
Browsing by Author "Chen, Pin-Yu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Incremental eigenpair computation for graph Laplacian matrices: theory and applications(Springer, 2018-12) Chen, Pin-Yu; Zhang, Baichuan; Al Hasan, Mohammad; Computer and Information Science, School of ScienceThe smallest eigenvalues and the associated eigenvectors (i.e., eigenpairs) of a graph Laplacian matrix have been widely used for spectral clustering and community detection. However, in real-life applications, the number of clusters or communities (say, K) is generally unknown a priori. Consequently, the majority of the existing methods either choose K heuristically or they repeat the clustering method with different choices of K and accept the best clustering result. The first option, more often, yields suboptimal result, while the second option is computationally expensive. In this work, we propose an incremental method for constructing the eigenspectrum of the graph Laplacian matrix. This method leverages the eigenstructure of graph Laplacian matrix to obtain the Kth smallest eigenpair of the Laplacian matrix given a collection of all previously computedItem Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding(Springer, 2019-06) Dave, Vachik S.; Zhang, Balchuan; Chen, Pin-Yu; Al Hasan, Mohammad; Computer and Information Science, School of ScienceNetwork embedding methodologies, which learn a distributed vector representation for each vertex in a network, have attracted considerable interest in recent years. Existing works have demonstrated that vertex representation learned through an embedding method provides superior performance in many real-world applications, such as node classification, link prediction, and community detection. However, most of the existing methods for network embedding only utilize topological information of a vertex, ignoring a rich set of nodal attributes (such as user profiles of an online social network, or textual contents of a citation network), which is abundant in all real-life networks. A joint network embedding that takes into account both attributional and relational information entails a complete network information and could further enrich the learned vector representations. In this work, we present Neural-Brane, a novel Neural Bayesian Personalized Ranking based Attributed Network Embedding. For a given network, Neural-Brane extracts latent feature representation of its vertices using a designed neural network model that unifies network topological information and nodal attributes. Besides, it utilizes Bayesian personalized ranking objective, which exploits the proximity ordering between a similar node pair and a dissimilar node pair. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification and clustering tasks on four real-world datasets. Experimental results demonstrate the superiority of our proposed method over the state-of-the-art existing methods.