- Browse by Author
Browsing by Author "Chen, Jonathan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Müller cells(PLOS, 2018-02-23) Thompson, Kayla; Chen, Jonathan; Luo, Qianyi; Xiao, Yucheng; Cummins, Theodore R.; Bhatwadekar, Ashay D.; Ophthalmology, School of MedicineDiabetic retinopathy (DR) is a major cause of adult blindness. Retinal Müller cells maintain water homeostasis and potassium concentration via inwardly rectifying Kir4.1 channels. Accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. While diabetes leads to a decrease in the Kir4.1 channels, it remains unknown whether AGEs-linked to the basement membrane (BM) affect normal Kir4.1 channels. For this study, we hypothesized that AGE-modification of laminin is detrimental to Kir4.1 channels, therefore, disrupting Müller cell function. The AGE-modified laminin-coated substrates were prepared by incubating Petri-dishes with laminin and methylglyoxal for seven days. The rat Müller cells (rMC-1) were propagated on AGE-modified laminin, and Kir4.1 expression and function were evaluated. Quantification of AGEs using ELISA revealed a dose-dependent increase in methylglyoxal-hydro-imidazolone adducts. The rMC-1 propagated on AGE-modified laminin demonstrated a decrease in Kir4.1 levels in immunofluorescence and western blot studies and a decrease in the Kir4.1 channel function. Kir4.1 decrease on AGE-modified laminin resulted in a disorganization of an actin cytoskeleton and disruption of α-dystroglycan-syntrophin-dystrophin complexes. Our studies suggest that AGE-modification of laminin is detrimental to Kir4.1 channels. By studying the role of AGEs in Kir4.1 channels we have identified a novel mechanism of Müller cell dysfunction and its subsequent involvement in DR.Item Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury(Elsevier, 2017-06) Bhatwadekar, Ashay D.; Beli, Eleni; Diao, Yanpeng; Chen, Jonathan; Luo, Qianyi; Alex, Alpha; Caballero, Sergio; Dominguez, James M., II; Salazar, Tatiana E.; Busik, Julia V.; Segal, Mark S.; Grant, Maria B.; Ophthalmology, School of MedicineThe brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1fx/fx;Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery. Eyes were enumerated for acellular capillaries and were stained for oxidative damage markers using nitrotyrosine immunohistochemistry. LSK (lineage-negative, stem cell antigen-1-positive, c-Kit-positive) cells were quantified and proliferation assessed. Hematopoiesis is influenced by innervation to the bone marrow, which we assessed using IHC analysis. The number of acellular capillaries increased threefold, and nitrotyrosine staining increased 1.5-fold, in the retinas of Bmal1fx/fx;Tek-Cre mice. The number of LSK cells from the Bmal1fx/fx;Tek-Cre mice decreased by 1.5-fold and was accompanied by a profound decrease in proliferative potential. Bmal1fx/fx;Tek-Cre mice also exhibited evidence of bone marrow denervation, demonstrating a loss of neurofilament-200 staining. Injured femoral arteries showed a 20% increase in neointimal hyperplasia compared with similarly injured wild-type controls. Our study highlights the importance of the circadian clock in maintaining vascular homeostasis and demonstrates that specific deletion of BMAL1 in endothelial and hematopoietic cells results in phenotypic features similar to those of diabetes.