ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chen, Jake Y."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Breast cancer subtyping from plasma proteins
    (Springer Nature, 2013) Zhang, Fan; Chen, Jake Y.; Computer and Information Science, Purdue School of Science
    Background: Early detection of breast cancer in blood is both appealing clinically and challenging technically due to the disease's illusive nature and heterogeneity. Today, even though major breast cancer subtypes have been characterized, i.e., luminal A, luminal B, HER2+, and basal-like, little is known about the heterogeneity of breast cancer in blood, which could help to discover minimally invasive protein biomarkers with which clinical researchers can detect, classify, and monitor different breast cancer subtypes. Results: In this study, we performed an integrative pathway-assisted clustering analysis of breast cancer subtypes from plasma proteome samples collected from 80 patients diagnosed with breast cancer and 80 healthy women. First, four breast cancer subtypes and additionally unknown subtype (according to existing annotation) were determined based on pathology lab test results in primary tumors of enrolled patients. Next, we developed and applied four distance metrics, i.e., Protein Intensity, Q-Value, Pathway Profile, and Distance Score Function, to measure and characterize these cancer subtypes. Then, we developed a permutation test to evaluate the significant protein level changes in each biological pathway for each breast cancer subtype, using q-value. Lastly, we developed a pathway-protein matrix for each of the four distance methods to estimate the distance between breast cancer subtypes, for which further Pathway Association Network analysis were performed. Conclusions: We found that 1) the luminal group (luminal A and luminal B) are clustered together, as well as the basal group (basal-like and HER2+) and 2) luminal A and luminal B are more close to each other than basal-like and HER2+ to each other. Our results were consistent with a recent independent breast cancer research from the Cancer Genome Atlas Network using genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our results showed that changes of different breast cancer subtypes at the pathway level are more profound and less variable than those at the molecular level. Similar subtypes share distinct yet similar pathway activation networks, while dissimilar subtypes are different also at the level of pathway activation networks. The results also showed that distance or similarity of cancer subtypes based on pathway analysis might be able to provide further insight into the intrinsic relationship of breast cancer subtypes. We believe integrative pathway-assisted proteomics analysis described here can become a model for reliable clustering or classification of other cancer subtypes.
  • Loading...
    Thumbnail Image
    Item
    Computational development of regulatory gene set networks for systems biology applications
    (2014) Suphavilai, Chayaporn; Chen, Jake Y.; Fang, Shiaofen; Al Hasan, Mohammad
    In systems biology study, biological networks were used to gain insights into biological systems. While the traditional approach to studying biological networks is based on the identification of interactions among genes or the identification of a gene set ranking according to differentially expressed gene lists, little is known about interactions between higher order biological systems, a network of gene sets. Several types of gene set network have been proposed including co-membership, linkage, and co-enrichment human gene set networks. However, to our knowledge, none of them contains directionality information. Therefore, in this study we proposed a method to construct a regulatory gene set network, a directed network, which reveals novel relationships among gene sets. A regulatory gene set network was constructed by using publicly available gene regulation data. A directed edge in regulatory gene set networks represents a regulatory relationship from one gene set to the other gene set. A regulatory gene set network was compared with another type of gene set network to show that the regulatory network provides additional information. In order to show that a regulatory gene set network is useful for understand the underlying mechanism of a disease, an Alzheimer's disease (AD) regulatory gene set network was constructed. In addition, we developed Pathway and Annotated Gene-set Electronic Repository (PAGER), an online systems biology tool for constructing and visualizing gene and gene set networks from multiple gene set collections. PAGER is available at http://discern.uits.iu.edu:8340/PAGER/. Global regulatory and global co-membership gene set networks were pre-computed. PAGER contains 166,489 gene sets, 92,108,741 co-membership edges, 697,221,810 regulatory edges, 44,188 genes, 651,586 unique gene regulations, and 650,160 unique gene interactions. PAGER provided several unique features including constructing regulatory gene set networks, generating expanded gene set networks, and constructing gene networks within a gene set. However, tissue specific or disease specific information was not considered in the disease specific network constructing process, so it might not have high accuracy of presenting the high level relationship among gene sets in the disease context. Therefore, our framework can be improved by collecting higher resolution data, such as tissue specific and disease specific gene regulations and gene sets. In addition, experimental gene expression data can be applied to add more information to the gene set network. For the current version of PAGER, the size of gene and gene set networks are limited to 100 nodes due to browser memory constraint. Our future plans is integrating internal gene or proteins interactions inside pathways in order to support future systems biology study.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University