- Browse by Author
Browsing by Author "Chen, Fei"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item An atlas of healthy and injured cell states and niches in the human kidney(Springer Nature, 2023) Lake, Blue B.; Menon, Rajasree; Winfree, Seth; Hu, Qiwen; Ferreira, Ricardo Melo; Kalhor, Kian; Barwinska, Daria; Otto, Edgar A.; Ferkowicz, Michael; Diep, Dinh; Plongthongkum, Nongluk; Knoten, Amanda; Urata, Sarah; Mariani, Laura H.; Naik, Abhijit S.; Eddy, Sean; Zhang, Bo; Wu, Yan; Salamon, Diane; Williams, James C.; Wang, Xin; Balderrama, Karol S.; Hoover, Paul J.; Murray, Evan; Marshall, Jamie L.; Noel, Teia; Vijayan, Anitha; Hartman, Austin; Chen, Fei; Waikar, Sushrut S.; Rosas, Sylvia E.; Wilson, Francis P.; Palevsky, Paul M.; Kiryluk, Krzysztof; Sedor, John R.; Toto, Robert D.; Parikh, Chirag R.; Kim, Eric H.; Satija, Rahul; Greka, Anna; Macosko, Evan Z.; Kharchenko, Peter V.; Gaut, Joseph P.; Hodgin, Jeffrey B.; KPMP Consortium; Eadon, Michael T.; Dagher, Pierre C.; El-Achkar, Tarek M.; Zhang, Kun; Kretzler, Matthias; Jain, Sanjay; Medicine, School of MedicineUnderstanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.Item Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration(Wiley, 2020-08-04) Sun, Ling; Zhang, Jie; Chen, Wenfeng; Chen, Yun; Zhang, Xiaohui; Yang, Mingjuan; Xiao, Min; Ma, Fujun; Yao, Yizhou; Ye, Meina; Zhang, Zhenkun; Chen, Kai; Chen, Fei; Ren, Yujun; Ni, Shiwei; Zhang, Xi; Yan, Zhangming; Sun, Zhi-Rong; Zhou, Hai-Meng; Yang, Hongqin; Xie, Shusen; Haque, M. Emdadul; Huang, Kun; Yang, Yufeng; Medical and Molecular Genetics, School of MedicineHow complex interactions of genetic, environmental factors and aging jointly contribute to dopaminergic degeneration in Parkinson's disease (PD) is largely unclear. Here, we applied frequent gene co‐expression analysis on human patient substantia nigra‐specific microarray datasets to identify potential novel disease‐related genes. In vivo Drosophila studies validated two of 32 candidate genes, a chromatin‐remodeling factor SMARCA4 and a biliverdin reductase BLVRA. Inhibition of SMARCA4 was able to prevent aging‐dependent dopaminergic degeneration not only caused by overexpression of BLVRA but also in four most common Drosophila PD models. Furthermore, down‐regulation of SMARCA4 specifically in the dopaminergic neurons prevented shortening of life span caused by α‐synuclein and LRRK2. Mechanistically, aberrant SMARCA4 and BLVRA converged on elevated ERK‐ETS activity, attenuation of which by either genetic or pharmacological manipulation effectively suppressed dopaminergic degeneration in Drosophila in vivo. Down‐regulation of SMARCA4 or drug inhibition of MEK/ERK also mitigated mitochondrial defects in PINK1 (a PD‐associated gene)‐deficient human cells. Our findings underscore the important role of epigenetic regulators and implicate a common signaling axis for therapeutic intervention in normal aging and a broad range of age‐related disorders including PD.Item De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders(American Association for the Advancement of Science, 2022) Jia, Xiangbin; Zhang, Shujie; Tan, Senwei; Du, Bing; He, Mei; Qin, Haisong; Chen, Jia; Duan, Xinyu; Luo, Jingsi; Chen, Fei; Ouyang, Luping; Wang, Jian; Chen, Guodong; Yu, Bin; Zhang, Ge; Zhang, Zimin; Lyu, Yongqing; Huang, Yi; Jiao, Jian; Chen, Jin Yun (Helen); Swoboda, Kathryn J.; Agolini, Emanuele; Novelli, Antonio; Leoni, Chiara; Zampino, Giuseppe; Cappuccio, Gerarda; Brunetti-Pierri, Nicola; Gerard, Benedicte; Ginglinger, Emmanuelle; Richer, Julie; McMillan, Hugh; White-Brown, Alexandre; Hoekzema, Kendra; Bernier, Raphael A.; Kurtz-Nelson, Evangeline C.; Earl, Rachel K.; Meddens, Claartje; Alders, Marielle; Fuchs, Meredith; Caumes, Roseline; Brunelle, Perrine; Smol, Thomas; Kuehl, Ryan; Day-Salvatore, Debra-Lynn; Monaghan, Kristin G.; Morrow, Michelle M.; Eichler, Evan E.; Hu, Zhengmao; Yuan, Ling; Tan, Jieqiong; Xia, Kun; Shen, Yiping; Guo, Hui; Pediatrics, School of MedicineStress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.Item Evaluation of Shade Integration of a Novel Universal-Shade Flowable Bulk-Filling Resin Composite(MDPI, 2024-12-04) Kaneko, Hirofumi; Kawamoto, Chiharu; Toida, Yu; Yago, Ryotaro; Wu, Di; Yuan, Yuan; Chen, Fei; Yamauti, Monica; Sano, Hidehiko; Tomokiyo, Atsushi; Biomedical and Applied Sciences, School of DentistryBackground: This study aimed to evaluate the color-matching and light transmission properties of a newly developed aesthetic flowable resin composite, OCFB-001. Methods: Rubber molds containing cylindrical cavities were filled with Estelite Sigma Quick, and 40 resin composite (CR) molds with simulated Class I cavities were prepared in shades A1, A2, A3, and A4, resulting in a total of 160 samples. Following bonding procedures, four different flowable resin composites (n = 10) were introduced into the cavities. The color difference (ΔE00) was calculated using two methods. A two-way analysis of variance was performed, and the interaction was significant, so a post hoc analysis was performed for each shade using Bonferroni's correction. The morphology of the filler in each material was observed via scanning electron microscopy (SEM). Results: In the A1 shade, OCFB-001 demonstrated color differences comparable to those of other materials. However, in the A2, A3, and A4 shades, OCFB-001 exhibited significantly lower color differences (ΔE00) than the other materials, with a more consistent distribution. SEM analysis revealed that the OCFB-001 structure resembled that of Estelite Bulk Fill Flowable. Conclusions: OCFB-001 showed excellent shade matching in the A2, A3, and A4 ranges and good matching in the A1 shade, on par with existing universal-shade flowable bulk-fill resin composites.