- Browse by Author
Browsing by Author "Chen, Bihong T."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Assessing brain volume changes in older women with breast cancer receiving adjuvant chemotherapy: a brain magnetic resonance imaging pilot study(BMC, 2018-05-02) Chen, Bihong T.; Sethi, Sean K.; Jin, Taihao; Patel, Sunita K.; Ye, Ningrong; Sun, Can-Lan; Rockne, Russell C.; Haacke, E. Mark; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Somlo, George; Li, Daneng; Yang, Richard; Tan, Heidi; Katheria, Vani; Morrison, Rachel; Hurria, Arti; Medicine, School of MedicineBACKGROUND: Cognitive decline is among the most feared treatment-related outcomes of older adults with cancer. The majority of older patients with breast cancer self-report cognitive problems during and after chemotherapy. Prior neuroimaging research has been performed mostly in younger patients with cancer. The purpose of this study was to evaluate longitudinal changes in brain volumes and cognition in older women with breast cancer receiving adjuvant chemotherapy. METHODS: Women aged ≥ 60 years with stage I-III breast cancer receiving adjuvant chemotherapy and age-matched and sex-matched healthy controls were enrolled. All participants underwent neuropsychological testing with the US National Institutes of Health (NIH) Toolbox for Cognition and brain magnetic resonance imaging (MRI) prior to chemotherapy, and again around one month after the last infusion of chemotherapy. Brain volumes were measured using Neuroreader™ software. Longitudinal changes in brain volumes and neuropsychological scores were analyzed utilizing linear mixed models. RESULTS: A total of 16 patients with breast cancer (mean age 67.0, SD 5.39 years) and 14 age-matched and sex-matched healthy controls (mean age 67.8, SD 5.24 years) were included: 7 patients received docetaxel and cyclophosphamide (TC) and 9 received chemotherapy regimens other than TC (non-TC). There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group pre-chemotherapy (p > 0.05). Exploratory hypothesis generating analyses focusing on the effect of the chemotherapy regimen demonstrated that the TC group had greater volume reduction in the temporal lobe (change = - 0.26) compared to the non-TC group (change = 0.04, p for interaction = 0.02) and healthy controls (change = 0.08, p for interaction = 0.004). Similarly, the TC group had a decrease in oral reading recognition scores (change = - 6.94) compared to the non-TC group (change = - 1.21, p for interaction = 0.07) and healthy controls (change = 0.09, p for interaction = 0.02). CONCLUSIONS: There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group; however, exploratory analyses demonstrated a reduction in both temporal lobe volume and oral reading recognition scores among patients on the TC regimen. These results suggest that different chemotherapy regimens may have differential effects on brain volume and cognition. Future, larger studies focusing on older adults with cancer on different treatment regimens are needed to confirm these findings.Item Brain gray matter reduction and premature brain aging after breast cancer chemotherapy: a longitudinal multicenter data pooling analysis(Springer, 2023) de Ruiter, Michiel B.; Deardorff, Rachael L.; Blommaert, Jeroen; Chen, Bihong T.; Dumas, Julie A.; Schagen, Sanne B.; Sunaert, Stefan; Wang, Lei; Cimprich, Bernadine; Peltier, Scott; Dittus, Kim; Newhouse, Paul A.; Silverman, Daniel H.; Schroyen, Gwen; Deprez, Sabine; Saykin, Andrew J.; McDonald, Brenna C.; Radiology and Imaging Sciences, School of MedicineBrain gray matter (GM) reductions have been reported after breast cancer chemotherapy, typically in small and/or cross-sectional cohorts, most commonly using voxel-based morphometry (VBM). There has been little examination of approaches such as deformation-based morphometry (DBM), machine-learning-based brain aging metrics, or the relationship of clinical and demographic risk factors to GM reduction. This international data pooling study begins to address these questions. Participants included breast cancer patients treated with (CT+, n = 183) and without (CT-, n = 155) chemotherapy and noncancer controls (NC, n = 145), scanned pre- and post-chemotherapy or comparable intervals. VBM and DBM examined GM volume. Estimated brain aging was compared to chronological aging. Correlation analyses examined associations between VBM, DBM, and brain age, and between neuroimaging outcomes, baseline age, and time since chemotherapy completion. CT+ showed longitudinal GM volume reductions, primarily in frontal regions, with a broader spatial extent on DBM than VBM. CT- showed smaller clusters of GM reduction using both methods. Predicted brain aging was significantly greater in CT+ than NC, and older baseline age correlated with greater brain aging. Time since chemotherapy negatively correlated with brain aging and annual GM loss. This large-scale data pooling analysis confirmed findings of frontal lobe GM reduction after breast cancer chemotherapy. Milder changes were evident in patients not receiving chemotherapy. CT+ also demonstrated premature brain aging relative to NC, particularly at older age, but showed evidence for at least partial GM recovery over time. When validated in future studies, such knowledge could assist in weighing the risks and benefits of treatment strategies.Item Effect of chemotherapy on default mode network connectivity in older women with breast cancer(Springer, 2022) Chen, Bihong T.; Chen, Zikuan; Patel, Sunita K.; Rockne, Russell C.; Wong, Chi Wah; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Sun, Can-Lan; Sedrak, Mina S.; Kim, Heeyoung; Celis, Ashley; Katheria, Vani; Dale, William; Radiology and Imaging Sciences, School of MedicineChemotherapy may impair cognition and contribute to accelerated aging. The purpose of this study was to assess the effects of chemotherapy on the connectivity of the default mode network (DMN) in older women with breast cancer. This prospective longitudinal study enrolled women aged ≥60 years with stage I–III breast cancer (CTx group) and matched healthy controls (HC group). Study assessments, consisting of resting-state functional MRI (rs-fMRI) and the Picture Sequence Memory (psm) test for episodic memory from the NIH Toolbox for Cognition, were obtained at baseline and within one month after the completion of chemotherapy for the CTx group and at matched intervals for the HC group. Two-sample t-test and FDR multiple comparison were used for statistical inference. Our analysis of the CTx group (N=19; 60–82 years of age, mean=66.6, SD=5.24) compared to the HC group (N=14; 60–78 years of age, mean=68.1, SD=5.69) revealed weaker DMN subnetwork connectivity in the anterior brain but stronger connectivity in the posterior brain at baseline. After chemotherapy, this pattern was reversed, with stronger anterior connectivity and weaker posterior connectivity. In addition, the meta-level functional network connectivity (FNC) among DMN subnetworks after chemotherapy was consistently weaker than the baseline FNC as seen in the couplings between anterior cingulate cortex (ACC) and retrosplenial (rSplenia) region, with ΔFNC(‘ACC’,’rSplenia’)=−0.14, t value=−2.44, 95%CI=[−0.27, −0.10], pFDR<0.05). The baseline FNC matrices of DMN subnetworks were correlated with psm scores (corr=0.58, p<0.05). Our results support DMN alterations as a potential neuroimaging biomarker for cancer-related cognitive impairment and accelerated aging.Item Effects of chemotherapy on aging white matter microstructure: a longitudinal diffusion tensor imaging study(Elsevier, 2020-03) Chen, Bihong T.; Ye, Ningrong; Wong, Chi Wah; Patel, Sunita K.; Jin, Taihao; Sun, Can-Lan; Rockne, Russell C.; Kim, Heeyoung; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Prakash, Neal; Mortimer, Joanne; Sedrak, Mina S.; Waisman, James; Yuan, Yuan; Li, Daneng; Vazquez, Jessica; Katheria, Vani; Dale, William; Medicine, School of MedicineObjective: We aimed to use diffusion tensor imaging (DTI) to detect alterations in white matter microstructure in older patients with breast cancer receiving chemotherapy. Methods: We recruited women age ≥60 years with stage I-III breast cancer (chemotherapy [CT] group; n = 19) to undergo two study assessments: at baseline and within one month after chemotherapy. Each assessment consisted of a brain magnetic resonance imaging scan with DTI and neuropsychological (NP) testing using the National Institutes of Health (NIH) Toolbox Cognition Battery. An age- and sex-matched group of healthy controls (HC, n = 14) underwent the same assessments at matched intervals. Four DTI parameters (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) were calculated and correlated with NP testing scores. Results: For CT group but not HCs, we detected statistically significant increases in MD and RD in the genu of the corpus callosum from time point 1 to time point 2 at p < 0.01, effect size:0.3655 and 0.3173, and 95% confidence interval: from 0.1490 to 0.5821, and from 0.1554 to 0.4792, for MD and RD respectively. AD values increased for the CT group and decreased for the HC group over time, resulting in significant between-group differences (p = 0.0056, effect size:1.0215, 95% confidence interval: from 0.2773 to 1.7657). There were no significant correlations between DTI parameters and NP scores (p > 0.05). Conclusions: We identified alterations in white matter microstructures in older women with breast cancer undergoing chemotherapy. These findings may potentially serve as neuroimaging biomarkers for identifying cognitive impairment in older adults with cancer.Item Gray matter density reduction associated with adjuvant chemotherapy in older women with breast cancer(Springer, 2018-11) Chen, Bihong T.; Jin, Taihao; Patel, Sunita K.; Ye, Ningrong; Sun, Can‑Lan; Ma, Huiyan; Rockne, Russell C.; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Li, Daneng; Somlo, George; Vazquez, Jessica; Levi, Abrahm; Tan, Heidi; Yang, Richard; Katheria, Vani; Hurria, Arti; Medicine, School of MedicinePURPOSE: The purpose of this study was to evaluate longitudinal changes in brain gray matter density (GMD) before and after adjuvant chemotherapy in older women with breast cancer. METHODS: We recruited 16 women aged ≥ 60 years with stage I-III breast cancers receiving adjuvant chemotherapy (CT) and 15 age- and sex-matched healthy controls (HC). The CT group underwent brain MRI and the NIH Toolbox for Cognition testing prior to adjuvant chemotherapy (time point 1, TP1) and within 1 month after chemotherapy (time point 2, TP2). The HC group underwent the same assessments at matched intervals. GMD was evaluated with the voxel-based morphometry. RESULTS: The mean age was 67 years in the CT group and 68.5 years in the HC group. There was significant GMD reduction within the chemotherapy group from TP1 to TP2. Compared to the HC group, the CT group displayed statistically significantly greater GMD reductions from TP1 to TP2 in the brain regions involving the left anterior cingulate gyrus, right insula, and left middle temporal gyrus (pFWE(family-wise error)-corrected < 0.05). The baseline GMD in left insula was positively correlated with the baseline list-sorting working memory score in the HC group (pFWE-corrected < 0.05). No correlation was observed for the changes in GMD with the changes in cognitive testing scores from TP1 to TP2 (pFWE-corrected < 0.05). CONCLUSIONS: Our findings indicate that GMD reductions were associated with adjuvant chemotherapy in older women with breast cancer. Future studies are needed to understand the clinical significance of the neuroimaging findings. This study is registered on ClinicalTrials.gov (NCT01992432).Item Intrinsic brain activity changes associated with adjuvant chemotherapy in older women with breast cancer: a pilot longitudinal study(Springer, 2019-04-23) Chen, Bihong T.; Jin, Taihao; Patel, Sunita K.; Ye, Ningrong; Ma, Huiyan; Wong, Chi Wah; Rockne, Russell C.; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Li, Daneng; Sedrak, Mina S.; Vazquez, Jessica; Katheria, Vani; Dale, William; Radiology and Imaging Sciences, School of MedicinePurpose Older cancer patients are at increased risk of cancer-related cognitive impairment. The purpose of this study was to assess the alterations in intrinsic brain activity associated with adjuvant chemotherapy in older women with breast cancer. Methods Chemotherapy treatment (CT) group included sixteen women aged ≥ 60 years (range 60–82 years) with stage I-III breast cancers, who underwent both resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing with NIH Toolbox for Cognition before adjuvant chemotherapy, at time point 1 (TP1), and again within 1 month after completing chemotherapy, at time point 2 (TP2). Fourteen age- and sex-matched healthy controls (HC) underwent the same assessments at matched intervals. Three voxel-wise rs-fMRI parameters: amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo), were computed at each time point. The changes in rs-fMRI parameters from TP1 to TP2 for each group, the group differences in changes (the CT group vs. the HC group), and the group difference in the baseline rs-fMRI parameters were assessed. In addition, correlative analysis between the rs-fMRI parameters and neuropsychological testing scores was also performed. Results In the CT group, one brain region, which included parts of the bilateral subcallosal gyri and right anterior cingulate gyrus, displayed increased ALFF from TP1 to TP2 (cluster p-corrected=0.024); another brain region in the left precuneus displayed decreased fALFF from TP1 to TP2 (cluster level p-corrected=0.025). No significant changes in the rs-fMRI parameters from TP1 to TP2 were observed in the HC group. Although ALFF and fALFF alterations were observed only in the CT group, none of the between-group differences in rs-fMRI parameter changes reached statistical significance. Conclusions Our study results of ALFF and fALFF alterations in the chemotherapy-treated women suggest that adjuvant chemotherapy may affect intrinsic brain activity in older women with breast cancer.Item Subcortical brain iron deposition and cognitive performance in older women with breast cancer receiving adjuvant chemotherapy: A pilot MRI study(Elsevier, 2018-12) Chen, Bihong T.; Ghassaban, Kiarash; Jin, Taihao; Patel, Sunita K.; Ye, Ningrong; Sun, Can-Lan; Kim, Heeyoung; Rockne, Russell C.; Haacke, E. Mark; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Somlo, George; Li, Daneng; Yang, Daneng; Yang, Richard; Tan, Heidi; Katheria, Vani; Morrison, Rachel; Hurria, Arti; Radiology and Imaging Sciences, School of MedicineAs the number of older adults in the U.S. increases, so too will the incidence of cancer and cancer-related cognitive impairment (CRCI). However, the exact underlying biological mechanism for CRCI is not yet well understood. We utilized susceptibility-weighted imaging with quantitative susceptibility mapping, a non-invasive MRI-based technique, to assess longitudinal iron deposition in subcortical gray matter structures and evaluate its association with cognitive performance in women age 60+ with breast cancer receiving adjuvant chemotherapy and age-matched women without breast cancer as controls. Brain MRI scans and neurocognitive scores from the NIH Toolbox for Cognition were obtained before chemotherapy (time point 1) and within one month after the last infusion of chemotherapy for the patients and at matched intervals for the controls (time point 2). There were 14 patients age 60+ with breast cancer (mean age 66.3 ± 5.3 years) and 13 controls (mean age 68.2 ± 6.1 years) included in this study. Brain iron increased as age increased. There were no significant between- or within- group differences in neurocognitive scores or iron deposition at time point 1 or between time points 1 and 2 (p > 0.01). However, there was a negative correlation between iron in the globus pallidus and the fluid cognition composite scores in the control group at time point 1 (r = −0.71; p < 0.01), but not in the chemotherapy group. Baseline iron in the putamen was negatively associated with changes in the oral reading recognition scores in the control group (r = 0.74, p < 0.01), but not in the chemotherapy group. Brain iron assessment did not indicate cancer or chemotherapy related short-term differences, yet some associations with cognition were observed. Studies with larger samples and longer follow-up intervals are warranted.