- Browse by Author
Browsing by Author "Chaturvedi, Praneet"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Differential miRNA Expression in Cells and Matrix Vesicles in Vascular Smooth Muscle Cells from Rats with Kidney Disease(PLOS, 2015-06-26) Chaturvedi, Praneet; Chen, Neal X.; O’Neill, Kalisha; McClintick, Jeanette N.; Moe, Sharon M.; Janga, Sarath Chandra; Department of BioHealth Informatics, School of Informatics and ComputingVascular calcification is a complex process and has been associated with aging, diabetes, chronic kidney disease (CKD). Although there have been several studies that examine the role of miRNAs (miRs) in bone osteogenesis, little is known about the role of miRs in vascular calcification and their role in the pathogenesis of vascular abnormalities. Matrix vesicles (MV) are known to play in important role in initiating vascular smooth muscle cell (VSMC) calcification. In the present study, we performed miRNA microarray analysis to identify the dysregulated miRs between MV and VSMC derived from CKD rats to understand the role of post-transcriptional regulatory networks governed by these miRNAs in vascular calcification and to uncover the differential miRNA content of MV. The percentage of miRNA to total RNA was increased in MV compared to VSMC. Comparison of expression profiles of miRNA by microarray demonstrated 33 miRs to be differentially expressed with the majority (~ 57%) of them down-regulated. Target genes controlled by differentially expressed miRNAs were identified utilizing two different complementary computational approaches Miranda and Targetscan to understand the functions and pathways that may be affected due to the production of MV from calcifying VSMC thereby contributing to the regulation of genes by miRs. We found several processes including vascular smooth muscle contraction, response to hypoxia and regulation of muscle cell differentiation to be enriched. Signaling pathways identified included MAP-kinase and wnt signaling that have previously been shown to be important in vascular calcification. In conclusion, our results demonstrate that miRs are concentrated in MV from calcifying VSMC, and that important functions and pathways are affected by the miRs dysregulation between calcifying VSMC and the MV they produce. This suggests that miRs may play a very important regulatory role in vascular calcification in CKD by controlling an extensive network of post-transcriptional targets.Item Integrated miR-mRNA Network Underlying Hepatic Fat Accumulation in HumansSrivastava, Rajneesh; Wang, Xiaoliang; Lin, Jingmei; Wei, Rongrong; Chaturvedi, Praneet; Chalasani, Naga P.; Janga, Sarath Chandra; Liu, WanqingBackground: An integrate miRs and mRNAs analysis in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH) is lacking. We aimed to identify miRs as well as the miR-mRNA regulatory network involved in hepatic fat accumulation and human NAFLD. Materials and Methods: Hepatic fat content (HFC) was measured, and liver histology was characterized for 73 liver tissue samples. MicroRNAs and mRNAs significantly associated with HFC were identified based on genome-wide mRNA and miR expression profiling data. These miRs and mRNAs were further used to build miR-mRNA association networks in NAFLD and normal samples based on the potential miR-mRNA targeting, as well as to conduct a pathway enrichment analysis. Results: We identified 62 miRs significantly correlated with HFC (p<0.05), with miR-518b and miR-19b demonstrated to be the most significant positive and negative correlation with HFC, respectively (p<0.008 for both). Many miRs that were previously associated with NAFLD/NASH were also observed. Integrated network analysis indicated that a few miRs-30b*, 616, 17*, 129-5p, 204, and 20a controlled >80% of HFC-associated mRNAs in this network, and the regulation network was significantly rewired from normal to NAFLD. Pathway analyses revealed that inflammation pathways mediated by chemokine and cytokine signaling, Wnt signaling, lntegrin signaling and Natural killer cell mediated cytotoxicity were enriched (p<0.05) in hepatic fat accumulation.Item Role of post-transcriptional regulation in human liver(2015-02-11) Chaturvedi, Praneet; Janga, Sarath ChandraMy thesis comprises of two individual projects which revolve around the importance of post-transcriptional regulation in liver. My first project is studying the integrated miRNA – mRNA network in NAFLD. For fulfillment of the study we conducted a genome-wide study to identify microRNAs (miRs) as well as the miR-mRNA regulatory network associated with hepatic fat and NAFLD. Hepatic fat content (HFC), miR and mRNA expression were assessed in 73 human liver samples. Liver histology of 49 samples was further characterized into normal (n=33) and NAFLD (n=16). Liver miRNome and transcriptome were significantly associated with HFC and utilized to (a) build miR-mRNA association networks in NAFLD and normal livers separately based on the potential miR-mRNA targeting and (b) conduct pathway enrichment analyses. We identified 62 miRs significantly correlated with HFC (p < 0.05 with q < 0.15), with miR-518b and miR-19b being most positively and negatively correlated with HFC, respectively (p < 0.008 for both). Integrated network analysis showed that six miRs (miRs-30b*, 612, 17*, 129-5p, 204 and 20a) controlled ~ 70% of 151 HFC-associated mRNAs (p < 0.001 with q < 0.005). Pathway analyses of these HFC-associated mRNA revealed their key effect (p<0.05) in inflammation pathways and lipid metabolism. Further, significant (p<2.47e-4, Wilcoxon test) reduction in degree of negative associations for HFC-associated miRs with HFC-associated mRNAs was observed in NAFLD as compared to normal livers, strongly suggesting highly dysfunctional miR-mRNA post-transcriptional regulatory network in NAFLD. Our study makes several novel observations which provide clues to better understand the pathogenesis and potential treatment targets of NAFLD. My second project is based on uncovering important players of post-transcriptional regulation (RBPs) and how they are associated with age and gender during healthy liver development. For this study, we performed an association analysis focusing on the expression changes of 1344 RNA Binding proteins (RBPs) as a function of age and gender in human liver. We identify 88 and 45 RBPs to be significantly associated with age and gender respectively. Experimental verification of several of the predicted associations in the mouse model confirmed our findings. Our results suggest that a small fraction of the gender-associated RBPs (~40%) are likely to be up-regulated in males. Altogether, these observations show that several of these RBPs are important developmentally conserved regulators. Further analysis of the protein interaction network of RBPs associated with age and gender based on the centrality measures like degree, betweenness and closeness revealed that several of these RBPs might be prominent players in liver development and impart gender specific alterations in gene expression via the formation of protein complexes. Indeed, both age and gender-associated RBPs in liver were found to show significantly higher clustering coefficients and network centrality measures compared to non-associated RBPs. The compendium of RBPs and this study will help us gain insight into the role of post-transcriptional regulatory molecules in aging and gender specific expression of genes.