- Browse by Author
Browsing by Author "Chapman, Arlene"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Analytical validity of a genotyping assay for use with personalized antihypertensive and chronic kidney disease therapy(Wolters Kluwer, 2019-01) Collins, Kimberly; Pratt, Victoria; Stansberry, Wesley; Medeiros, Elizabeth; Kannegolla, Karthik; Swart, Marelize; Skaar, Todd C.; Chapman, Arlene; Decker, Brian; Moorthi, Ranjani; Eadon, Michael; Medicine, School of MedicineHypertension and chronic kidney disease are inextricably linked. Hypertension is a well-recognized contributor to chronic kidney disease progression and, in turn, renal disease potentiates hypertension. A generalized approach to drug selection and dosage has not proven effective in managing these conditions, in part, because patients with heterogeneous kidney disease and hypertension etiologies are frequently grouped according to functional or severity classifications. Genetic testing may serve as an important tool in the armamentarium of clinicians who embrace precision medicine. Increasing scientific evidence has supported the utilization of genomic information to select efficacious antihypertensive therapy and understand hereditary contributors to chronic kidney disease progression. Given the wide array of antihypertensive agents available and diversity of genetic renal disease predictors, a panel-based approach to genotyping may be an efficient and economic means of establishing an individualized blood pressure response profile for patients with various forms of chronic kidney disease and hypertension. In this manuscript, we discuss the validation process of a Clinical Laboratory Improvement Amendments (CLIA)-approved genetic test to relay information on 72 genetic variants associated with kidney disease progression and hypertension therapy. These genomic-based interventions, in addition to routine clinical data, may help inform physicians to provide personalized therapy.Item Prospects for mTOR Inhibitor Use in Patients with Polycystic Kidney Disease and Hamartomatous Diseases(American Society of Nephrology, 2010-07) Torres, Vicente E.; Boletta, Alessandra; Chapman, Arlene; Gattone, Vincent; Pei, York; Qian, Qi; Wallace, Darren P.; Weimbs, Thomas; Wüthrich, Rudolf P.; Anatomy and Cell Biology, School of MedicineMammalian target of rapamycin (mTOR) is the core component of two complexes, mTORC1 and mTORC2. mTORC1 is inhibited by rapamycin and analogues. mTORC2 is impeded only in some cell types by prolonged exposure to these compounds. mTOR activation is linked to tubular cell proliferation in animal models and human autosomal dominant polycystic kidney disease (ADPKD). mTOR inhibitors impede cell proliferation and cyst growth in polycystic kidney disease (PKD) models. After renal transplantation, two small retrospective studies suggested that mTOR was more effective than calcineurin inhibitor-based immunosuppression in limiting kidney and/or liver enlargement. By inhibiting vascular remodeling, angiogenesis, and fibrogenesis, mTOR inhibitors may attenuate nephroangiosclerosis, cyst growth, and interstitial fibrosis. Thus, they may benefit ADPKD at multiple levels. However, mTOR inhibition is not without risks and side effects, mostly dose-dependent. Under certain conditions, mTOR inhibition interferes with adaptive increases in renal proliferation necessary for recovery from injury. They restrict Akt activation, nitric oxide synthesis, and endothelial cell survival (downstream from mTORC2) and potentially increase the risk for glomerular and peritubular capillary loss, vasospasm, and hypertension. They impair podocyte integrity pathways and may predispose to glomerular injury. Administration of mTOR inhibitors is discontinued because of side effects in up to 40% of transplant recipients. Currently, treatment with mTOR inhibitors should not be recommended to treat ADPKD. Results of ongoing studies must be awaited and patients informed accordingly. If effective, lower dosages than those used to prevent rejection would minimize side effects. Combination therapy with other effective drugs could improve tolerability and results.