- Browse by Author
Browsing by Author "Chandler, Kristina"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Epidemiology of Alcohol-associated Liver Disease(Elsevier, 2021) Han, Sen; Yang, Zhihong; Zhang, Ting; Ma, Jing; Chandler, Kristina; Liangpunsakul, Suthat; Medicine, School of MedicineAlcohol-associated liver disease (ALD) is a consequence of excessive alcohol use. It comprises a spectrum of histopathologic changes ranging from simple steatosis, steatohepatitis, and cirrhosis to hepatocellular carcinoma. The public health impact of ALD is growing because of an increase in the prevalence and incidence of ALD in parallel with liver transplant and mortalities. There are multiple factors involved in the pathogenesis and progression of ALD. Reducing alcohol consumption is the cornerstone of ALD management. The efforts to reduce excessive alcohol use at the individual and population levels are urgently needed to prevent adverse outcomes from ALD.Item Levels of circulating follicular helper T cells, T helper 1 cells, and the prognostic significance of soluble form of CD40 ligand on survival in patients with alcoholic cirrhosis(KeAi Communications Co., 2018-03) Hollister, Kristin; Kusumanchi, Praveen; Ross, Ruth Ann; Chandler, Kristina; Oshodi, AdePeju; Heathers, Laura; Teagarden, Sean; Wang, Li; Dent, Alexander L.; Liangpunsakul, Suthat; Microbiology and Immunology, School of MedicineBackground: Excessive drinkers (ED) and patients with alcoholic liver disease (ALD) are several times more susceptible to bacterial and viral infections and have a decrease in antibody responses to vaccinations. Follicular helper T (TFH) cells are essential to select B cells in the germinal center and to produce antibodies. TFH cells express both a membrane-associated and a soluble form of CD40 ligand (sCD40L); in which the latter form is released to circulation upon T cell activation. The effect of alcohol on TFH cells has not been studied. Objectives: The goals of this study are to determine the levels of TFH and T helper 1 (Th1) cells in ED and those with alcoholic cirrhosis (AC) when compared to healthy controls and to determine the prognostic significance of sCD40L in a cohort of patients with AC. Methods: Controls, ED, and those with AC were enrolled. Baseline demographic, laboratory tests, and peripheral blood mononuclear cells (PBMCs) were isolated and assessed via flow cytometry for TFH cells. In vitro study was performed to determine the ability of PBMCs to secrete interferon (IFN)-γ upon stimulation. Serum sCD40L were also determined and its prognostic significance was tested in a cohort of AC patients. Results: The levels of circulating TFH (cTFH) cells were significantly lower in peripheral blood of subjects with ED and AC compared to controls (P<0.05). IFN-γ secretion from PBMCs upon stimulation was also lower in ED and those with cirrhosis. Serum sCD40L was significantly lower in ED and AC when compared to that in controls (P<0.0005). Its level was an independent predictor of mortality. Conclusions: Patients with AC had significantly lower level of cTFH and sCD40L. The level of sCD40L was an independent predictor of mortality in these patients.Item Quantity of alcohol drinking positively correlates with serum levels of endotoxin and markers of monocyte activation(Nature Publishing Group, 2017-06-30) Liangpunsakul, Suthat; Toh, Evelyn; Ross, Ruth A.; Heathers, Laura E.; Chandler, Kristina; Oshodi, AdePeju; McGee, Breann; Modlik, Elizabeth; Linton, Tobyn; Mangiacarne, Darrin; Jimenez, Claudie; Dong, X. Charlie; Wang, Li; Tu, Wanzhu; Nelson, David E.; Medicine, School of MedicineIt is unknown if LPS (lipopolysaccharides) and markers of immune activation, soluble CD14 (sCD14) and CD163 (sCD163) are associated with the quantity of alcohol consumption. 148 subjects were enrolled (97 excessive drinkers (ED) and 51 controls). Time Line Follow-Back questionnaire was used to quantify the amount of alcohol consumed. Serum LPS, sCD14, and sCD163 were measured. Peripheral blood mononuclear cells (PBMCs) were also isolated. Compared to controls, ED had higher total drinks in the past 30 days, higher levels of LPS, sCD14 and sCD163. The levels of serum LPS, sCD14, and sCD163 were higher among ED with recent alcohol consumption (last drink <10 days before enrollment) compared to those without recent drinking. Similar bacterial genome copy numbers were detected in control and ED groups. We found that ethanol primed PBMCs for LPS-induced inflammatory responses. A positive correlation between serum LPS, sCD14, sCD163 and the quantity of alcohol drinking was observed after adjusting for covariates and that abstinence was associated with decline in the levels of LPS, sCD14 and sCd163. We found an increase in the levels of LPS and markers of monocyte activations in ED. Further studies are needed to determine whether these can be used as the biomarkers for excessive alcohol use.Item Serum metabolomic analysis reveals several novel metabolites in association with excessive alcohol use - an exploratory study(Elsevier, 2022) Liu, Danni; Yang, Zhihong; Chandler, Kristina; Oshodi, Adepeju; Zhang, Ting; Ma, Jing; Kusumanchi, Praveen; Huda, Nazmul; Heathers, Laura; Perez, Kristina; Tyler, Kelsey; Ross, Ruth Ann; Jiang, Yanchao; Zhang, Dabao; Zhang, Min; Liangpunsakul, Suthat; Medicine, School of MedicineAppropriate screening tool for excessive alcohol use (EAU) is clinically important as it may help providers encourage early intervention and prevent adverse outcomes. We hypothesized that patients with excessive alcohol use will have distinct serum metabolites when compared to healthy controls. Serum metabolic profiling of 22 healthy controls and 147 patients with a history of EAU was performed. We employed seemingly unrelated regression to identify the unique metabolites and found 67 metabolites (out of 556), which were differentially expressed in patients with EAU. Sixteen metabolites belong to the sphingolipid metabolism, 13 belong to phospholipid metabolism, and the remaining 38 were metabolites of 25 different pathways. We also found 93 serum metabolites that were significantly associated with the total quantity of alcohol consumption in the last 30 days. A total of 15 metabolites belong to the sphingolipid metabolism, 11 belong to phospholipid metabolism, and 7 metabolites belong to lysolipid. Using a Venn diagram approach, we found the top 10 metabolites with differentially expressed in EAU and significantly associated with the quantity of alcohol consumption, sphingomyelin (d18:2/18:1), sphingomyelin (d18:2/21:0,d16:2/23:0), guanosine, S-methylmethionine, 10-undecenoate (11:1n1), sphingomyelin (d18:1/20:1, d18:2/20:0), sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0), N-acetylasparagine, sphingomyelin (d18:1/19:0, d19:1/18:0), and 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1). The diagnostic performance of the top 10 metabolites, using the area under the ROC curve, was significantly higher than that of commonly used markers. We have identified a unique metaboloic signature among patients with EAU. Future studies to validate and determine the kinetics of these markers as a function of alcohol consumption are needed.Item Serum Metabolomic Profiling Identifies Key Metabolic Signatures Associated With Pathogenesis of Alcoholic Liver Disease in Humans(Wiley, 2019-02-20) Yang, Zhihong; Kusumanchi, Praveen; Ross, Ruth A.; Heathers, Laura; Chandler, Kristina; Oshodi, Adepeju; Thoudam, Themis; Li, Feng; Wang, Li; Liangpunsakul, Suthat; Medicine, School of MedicineAlcoholic liver disease (ALD) develops in a subset of heavy drinkers (HDs). The goals of our study were to (1) characterize the global serum metabolomic changes in well-characterized cohorts of controls (Cs), HDs, and those with alcoholic cirrhosis (AC); (2) identify metabolomic signatures as potential diagnostic markers, and (3) determine the trajectory of serum metabolites in response to alcohol abstinence. Serum metabolic profiling was performed in 22 Cs, 147 HDs, and 33 patients with AC using ultraperformance liquid chromatography-tandem mass spectrometry. Hepatic gene expression was conducted in Cs (n = 16) and those with AC (n = 32). We found progressive changes in the quantities of metabolites from heavy drinking to AC. Taurine-conjugated bile acids (taurocholic acid [TCA], 127-fold; taurochenodeoxycholic acid [TCDCA], 131-fold; and tauroursodeoxycholic acid, 56-fold) showed more striking elevations than glycine-conjugated forms (glycocholic acid [GCA], 22-fold; glycochenodeoxycholic acid [GCDCA], 22-fold; and glycoursodeoxycholic acid [GUDCA], 11-fold). This was associated with increased liver cytochrome P450, family 7, subfamily B, member 1 and taurine content (more substrates); the latter was due to dysregulation of homocysteine metabolism. Increased levels of GCDCA, TCDCA, GCA, and TCA positively correlated with disease progression from Child-Pugh A to C and Model for End-Stage Liver Disease scores, whereas GCDCA, GCA, and GUDCA were better predictors of alcohol abstinence. The levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor (FGF) 21 but not FGF19 were increased in HDs, and all three were further increased in those with AC. Conclusion: Serum taurine/glycine-conjugated bile acids could serve as noninvasive markers to predict the severity of AC, whereas GLP-1 and FGF21 may indicate a progression from heavy drinking to AC.Item Stress-Responsive Gene FK506-Binding Protein 51 Mediates Alcohol-Induced Liver Injury Through the Hippo Pathway and Chemokine (C-X-C Motif) Ligand 1 Signaling(Wolters Kluwer, 2021) Kusumanchi, Praveen; Liang, Tiebing; Zhang, Ting; Ross, Ruth Ann; Han, Sen; Chandler, Kristina; Oshodi, Adepeju; Jiang, Yanchao; Dent, Alexander L.; Skill, Nicholas J.; Huda, Nazmul; Ma, Jing; Yang, Zhihong; Liangpunsakul, Suthat; Medicine, School of MedicineBackground and aims: Chronic alcohol drinking is a major risk factor for alcohol-associated liver disease (ALD). FK506-binding protein 51 (FKBP5), a cochaperone protein, is involved in many key regulatory pathways. It is known to be involved in stress-related disorders, but there are no reports regarding its role in ALD. This present study aimed to examine the molecular mechanism of FKBP5 in ALD. Approach and results: We found a significant increase in hepatic FKBP5 transcripts and protein expression in patients with ALD and mice fed with chronic-plus-single binge ethanol. Loss of Fkbp5 in mice protected against alcohol-induced hepatic steatosis and inflammation. Transcriptomic analysis revealed a significant reduction of Transcriptional enhancer factor TEF-1 (TEA) domain transcription factor 1 (Tead1) and chemokine (C-X-C motif) ligand 1 (Cxcl1) mRNA in ethanol-fed Fkbp5-/- mice. Ethanol-induced Fkbp5 expression was secondary to down-regulation of methylation level at its 5' untranslated promoter region. The increase in Fkbp5 expression led to induction in transcription factor TEAD1 through Hippo signaling pathway. Fkbp5 can interact with yes-associated protein (YAP) upstream kinase, mammalian Ste20-like kinase 1 (MST1), affecting its ability to phosphorylate YAP and the inhibitory effect of hepatic YAP phosphorylation by ethanol leading to YAP nuclear translocation and TEAD1 activation. Activation of TEAD1 led to increased expression of its target, CXCL1, a chemokine-mediated neutrophil recruitment, causing hepatic inflammation and neutrophil infiltration in our mouse model. Conclusions: We identified an FKBP5-YAP-TEAD1-CXCL1 axis in the pathogenesis of ALD. Loss of FKBP5 ameliorates alcohol-induced liver injury through the Hippo pathway and CXCL1 signaling, suggesting its potential role as a target for the treatment of ALD.Item Stress-responsive gene FKBP5 mediates alcohol-induced liver injury through the hippo pathway and CXCL1 signaling(Wiley, 2021-09) Kusumanchi, Praveen; Liang, Tiebing; Zhang, Ting; Ross, Ruth Ann; Han, Sen; Chandler, Kristina; Oshodi, Adepeju; Jiang, Yanchao; Dent, Alexander L.; Skill, Nicholas J.; Huda, Nazmul; Ma, Jing; Yang, Zhihong; Liangpunsakul, Suthat; Medicine, School of MedicineChronic alcohol drinking is a major risk factor for alcohol-associated liver disease (ALD). FK506-binding protein 51 (FKBP5), a co-chaperone protein, is involved in many key regulatory pathways. It is known to be involved in stress-related disorders but there are no reports regarding its role in ALD. This present study aimed to examine the molecular mechanism of FKBP5 in ALD. We found a significant increase in hepatic FKBP5 transcripts and protein expression in patients with ALD and mice fed with chronic-plus-single binge ethanol. Loss of Fkbp5 in mice protected against alcohol-induced hepatic steatosis and inflammation. Transcriptomic analysis revealed a significant reduction of Tead1 and Cxcl1 mRNA in ethanol-fed Fkbp5-/- mice. Ethanol-induced Fkbp5 expression was secondary to downregulation of methylation level at its 5′ UTR promoter region. The increase in Fkbp5 expression led to induction in transcription factor Tead1 through Hippo signaling pathway. Fkbp5 can interact with YAP upstream kinase, MST1, affecting its ability to phosphorylate YAP and the inhibitory effect of hepatic YAP phosphorylation by ethanol leading to YAP nuclear translocation and TEAD1 activation. Activation of TEAD1 led to increased expression of its novel target, CXCL1, a chemokine-mediated neutrophil recruitment, causing hepatic inflammation and neutrophil infiltration in our mouse model. Conclusion We identified a novel FKBP5-YAP-TEAD1-CXCL1 axis in the pathogenesis of ALD. Loss of FKBP5 ameliorates alcohol-induced liver injury through the Hippo pathway and CXCL1 signaling, suggesting its potential role as a target for the treatment of ALD.Item Transcriptomic Analysis Reveals the Messenger RNAs Responsible for the Progression of Alcoholic Cirrhosis(Wolters Kluwer, 2022) Yang, Zhihong; Han, Sen; Zhang, Ting; Kusumanchi, Praveen; Huda, Nazmul; Tyler, Kelsey; Chandler, Kristina; Skill, Nicholas J.; Tu, Wanzhu; Shan, Mu; Jiang, Yanchao; Maiers, Jessica L.; Perez, Kristina; Ma, Jing; Liangpunsakul, Suthat; Medicine, School of MedicineAlcohol-associated liver disease is the leading cause of chronic liver disease. We hypothesized that the expression of specific coding genes is critical for the progression of alcoholic cirrhosis (AC) from compensated to decompensated states. For the discovery phase, we performed RNA sequencing analysis of 16 peripheral blood RNA samples, 4 healthy controls (HCs) and 12 patients with AC. The DEGs from the discovery cohort were validated by quantitative polymerase chain reaction in a separate cohort of 17 HCs and 48 patients with AC (17 Child-Pugh A, 16 Child-Pugh B, and 15 Child-Pugh C). We observed that the numbers of differentially expressed messenger RNAs (mRNAs) were more pronounced with worsening disease severity. Pathway analysis for differentially expressed genes for patients with Child-Pugh A demonstrated genes involved innate immune responses; those in Child-Pugh B belonged to genes related to oxidation and alternative splicing; those in Child-Pugh C related to methylation, acetylation, and alternative splicing. We found significant differences in the expression of heme oxygenase 1 (HMOX1) and ribonucleoprotein, PTB binding 1 (RAVER1) in peripheral blood of those who died during the follow-up when compared to those who survived. Conclusion: Unique mRNAs that may implicate disease progression in patients with AC were identified by using a transcriptomic approach. Future studies to confirm our results are needed, and comprehensive mechanistic studies on the implications of these genes in AC pathogenesis and progression should be further explored.