- Browse by Author
Browsing by Author "Cerra-Franco, Alberto"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Congenital ichthyosis patient with squamous cell carcinoma of the skin who received concurrent chemoradiation: A case report(Elsevier, 2017-09-05) Cerra-Franco, Alberto; Grethlein, Sara J.; Bertrand, Todd E.; Wooden, William A.; Saito, Naoyuki G.; Radiation Oncology, School of MedicineItem Histology, Tumor Volume, and Radiation Dose Predict Outcomes in NSCLC Patients After Stereotactic Ablative Radiotherapy(Elsevier, 2018) Shiue, Kevin; Cerra-Franco, Alberto; Shapiro, Ronald; Estabrook, Neil; Mannina, Edward M.; Deig, Christopher R.; Althouse, Sandra; Liu, Sheng; Wan, Jun; Zang, Yong; Agrawal, Namita; Ioannides, Pericles; Liu, Yongmei; Zhang, Chen; DesRosiers, Colleen; Bartlett, Greg; Ewing, Marvene; Langer, Mark P.; Watson, Gordon; Zellars, Richard; Kong, Feng-Ming; Lautenschlaeger, Tim; Radiation Oncology, School of MedicineIntroduction It remains unclear if histology should be independently considered when choosing stereotactic ablative body radiotherapy dose prescriptions for NSCLC. Methods The study population included 508 patients with 561 lesions between 2000 and 2016, of which 442 patients with 482 lesions had complete dosimetric information. Eligible patients had histologically or clinically diagnosed early-stage NSCLC and were treated with 3 to 5 fractions. The primary endpoint was in-field tumor control censored by either death or progression. Involved lobe control was also assessed. Results At 6.7 years median follow-up, 3-year in-field control, involved lobe control, overall survival, and progression-free survival rates were 88.1%, 80.0%, 49.4%, and 37.2%, respectively. Gross tumor volume (GTV) (hazard ratio [HR] = 1.01 per mL, p = 0.0044) and histology (p = 0.0225) were independently associated with involved lobe failure. GTV (HR = 1.013, p = 0.001) and GTV dose (cutoff of 110 Gy, biologically effective dose with α/β = 10 [BED10], HR = 2.380, p = 0.0084) were independently associated with in-field failure. For squamous cell carcinomas, lower prescription doses were associated with worse in-field control (12 Gy × 4 or 10 Gy × 5 versus 18 Gy or 20 Gy × 3: HR = 3.530, p = 0.0447, confirmed by propensity score matching) and was independent of GTV (HR = 1.014 per mL, 95% confidence interval: 1.005–1.022, p = 0.0012). For adenocarcinomas, there were no differences in in-field control observed using the above dose groupings (p = 0.12 and p = 0.31, respectively). Conclusions In the absence of level I data, GTV and histology should be considered to personalize radiation dose for stereotactic ablative body radiotherapy. We suggest lower prescription doses (i.e., 12 Gy × 4 or 10 G × 5) should be avoided for squamous cell carcinomas if normal tissue tolerances are met.Item Impact of Lung Parenchymal-Only Failure on Overall Survival in Early-Stage Lung Cancer Patients Treated With Stereotactic Ablative Radiotherapy(Elsevier, 2021) Elbanna, May; Shiue, Kevin; Edwards, Donna; Cerra-Franco, Alberto; Agrawal, Namita; Hinton, Jason; Mereniuk, Todd; Huang, Christina; Ryan, Joshua L.; Smith, Jessica; Aaron, Vasantha D.; Burney, Heather; Zang, Yong; Holmes, Jordan; Langer, Mark; Zellars, Richard; Lautenschlaeger, Tim; Radiation Oncology, School of MedicineIntroduction: The impact of lung parenchymal-only failure on patient survival after stereotactic ablative body radiotherapy (SABR) for early-stage non-small-cell lung cancer (NSCLC) remains unclear. Patients and methods: The study population included 481 patients with early-stage NSCLC who were treated with 3- to 5-fraction SABR between 2000 and 2016. The primary study objective was to assess the impact of out-of-field lung parenchymal-only failure (OLPF) on overall survival (OS). Results: At a median follow-up of 5.9 years, the median OS was 2.7 years for all patients. Patients with OLPF did not have a significantly different OS compared to patients without failure (P = .0952, median OS 4.1 years with failure vs. 2.6 years never failure). Analysis in a 1:1 propensity score-matched cohort for Karnofsky performance status, comorbidity score, and smoking status showed no differences in OS between patients without failure and those with OLPF (P = .8). In subgroup analyses exploring the impact of time of failure on OS, patients with OLPF 6 months or more after diagnosis did not have significantly different OS compared to those without failure, when accounting for immortal time bias (P = .3, median OS 4.3 years vs. 3.5 years never failure). Only 7 patients in our data set experienced failure within 6 months of treatment, of which only 4 were confirmed to be true failures; therefore, limited data are available in our cohort on the impact of OLPF for ≤ 6 months on OS. Conclusion: OLPF after SABR for early-stage NSCLC does not appear to adversely affect OS, especially if occurring at least 6 months after SABR. More studies are needed to understand if OLPF within 6 months of SABR is associated with adverse OS. These data are useful when discussing prognosis of lung parenchymal failures after initial SABR.Item Predictors of Nodal and Metastatic Failure in Early Stage Non-Small Cell Lung Cancer after Stereotactic Body Radiation Therapy(Elsevier, 2019) Cerra-Franco, Alberto; Liu, S.; Azar, M.; Shiue, Kevin; Freije, S.; Hinton, J.; Deig, Christopher R.; Edwards, D.; Estabrook, Neil C.; Ellsworth, S. G.; Huang, K.; Diab, K.; Langer, Mark P.; Zellars, Richard; Kong, Feng-Ming; Wan, Jun; Lautenschlaeger, Tim; Radiation Oncology, School of MedicineIntroduction/Background Many early-stage non-small cell lung cancer (ES-NSCLC) patients undergoing stereotactic body radiation therapy (SBRT) develop metastases, which is associated with poor outcomes. We sought to identify factors predictive of metastases after lung SBRT and created a risk stratification tool. Materials and Methods We included 363 patients with ES-NSCLC who received SBRT; median follow-up was 5.8 years. The following patient and tumor factors were retrospectively analyzed for their association with metastases (defined as nodal and/or distant failure): sex; age; lobe involved; centrality; previous NSCLC; smoking status; gross tumor volume (GTV); T-stage; histology; dose; minimum, maximum, and mean GTV dose; and parenchymal lung failure. A metastasis risk-score linear-model using beta coefficients from a multivariate Cox model was built. Results A total of 111/406 (27.3%) lesions metastasized. GTV volume and dose were significantly associated with metastases on univariate and multivariate Cox proportional hazards modeling (p<0.001 and HR=1.02 per mL, p<0.05 and HR=0.99 per Gy, respectively). Histology, T-stage, centrality, lung parenchymal failures, and previous NSCLC were not associated with development of metastasis. A metastasis risk-score model using GTV volume and prescription dose was built: [risk score=(0.01611 x GTV)–(0.00525 x dose (BED10))]. Two risk-score cutoffs separating the cohort into low-, medium-, and high-risk subgroups were examined. The risk-score identified significant differences in time to metastases between low-, medium-, and high-risk patients (p<0.001), with 3-year estimates of 81.1%, 63.8%, and 38%, respectively. Conclusion GTV volume and radiation dose are associated with time to metastasis and may be used to identify patients at higher risk of metastasis after lung SBRT.Item Superior vena cava syndrome in a patient with locally advanced lung cancer with good response to definitive chemoradiation: a case report(Biomed Central, 2018-10-20) Hinton, Jason; Cerra-Franco, Alberto; Shiue, Kevin; Shea, Lindsey; Aaron, Vasantha; Billows, Geoffrey; Al-Hader, Ahmad; Lautenschlaeger, Tim; Radiation Oncology, School of MedicineBACKGROUND: The incidence of superior vena cava syndrome within the United States is roughly 15,000 cases per year. Superior vena cava syndrome is a potentially life-threatening medical condition; however, superior vena cava syndrome is not fatal in the majority of cases. Superior vena cava syndrome encompasses a collection of signs and symptoms resulting from obstruction of the superior vena cava, including swelling of the upper body of the head, neck, arms, and/or breast. It is also associated with cyanosis, plethora, and distended subcutaneous vessels. Lung cancer, including both non-small cell lung cancer and small cell lung cancer, is the most common extrinsic cause of superior vena cava syndrome. Intrinsic disruption of superior vena cava flow can also precipitate superior vena cava syndrome. This case report describes an unusual presentation and potential etiology of superior vena cava syndrome. CASE PRESENTATION: Our patient was a 51-year-old black woman with locally advanced, stage IIIB non-small cell lung cancer who had no clinical symptoms of superior vena cava syndrome at the time of diagnosis. However, she did have radiographic evidence of superior vena cava stenosis caused by extrinsic compression from her large right hilar primary tumor. She was treated with definitive chemoradiation, receiving 60 Gy of external beam radiation therapy given concurrently with chemotherapy. Three months after completion of radiotherapy, she developed signs of superior vena cava syndrome, including breast and supraclavicular swelling. She had a chest computed tomography scan showing over 50% reduction in the size of a right hilar mass; however, she had continued radiographic stenosis of the superior vena cava. The distribution of stenosis appeared to be inferior to the caudal extent of pretreatment tumor volume. She had no other radiographic indications for superior vena cava syndrome. CONCLUSIONS: Generally, superior vena cava syndrome is the result of extrinsic compression of the superior vena cava by tumor. Our patient's case represents the development of superior vena cava syndrome after an excellent response of tumor with near-complete tumor response. We suspect chemoradiation therapy as a potential etiology for the precipitation of the superior vena cava syndrome, which is currently not well reported in the medical literature.