- Browse by Author
Browsing by Author "Cerabona, Donna"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item FANCA safeguards interphase and mitosis during hematopoiesis in vivo(Elsevier, 2015-12) Abdul-Sater, Zahi; Cerabona, Donna; Potchanant, Elizabeth Sierra; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz; Department of Pediatrics, IU School of MedicineThe Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.Item INPP5E Preserves Genomic Stability through Regulation of Mitosis(American Society for Microbiology, 2017-03-15) Sierra Potchanant, Elizabeth A.; Cerabona, Donna; Sater, Zahi Abdul; He, Ying; Sun, Zejin; Gehlhausen, Jeff; Nalepa, Grzegorz; Department of Pediatrics, IU School of MedicineThe partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development.Item Leukemia and chromosomal instability in aged Fancc-/- mice(Elsevier, 2016-05) Cerabona, Donna; Sun, Zejin; Nalepa, Grzegorz; Department of Pediatrics, IU School of MedicineFanconi anemia (FA) is an inherited disorder of genomic instability associated with high risk of myelodysplasia and acute myeloid leukemia (AML). Young mice deficient in FA core complex genes do not naturally develop cancer, hampering preclinical studies on malignant hematopoiesis in FA. Here we describe that aging Fancc(-/-) mice are prone to genomically unstable AML and other hematologic neoplasms. We report that aneuploidy precedes malignant transformation during Fancc(-/-) hematopoiesis. Our observations reveal that Fancc(-/-) mice develop hematopoietic chromosomal instability followed by leukemia in an age-dependent manner, recapitulating the clinical phenotype of human FA and providing a proof of concept for future development of preclinical models of FA-associated leukemogenesis.Item Leukemia and chromosomal instability in aged Fancc−/− mice(Elsevier, 2016-05) Cerabona, Donna; Sun, Zejin; Nalepa, Grzegorz; Department of Pediatrics, IU School of MedicineFanconi anemia (FA) is an inherited disorder of genomic instability associated with high risk of myelodysplasia and acute myeloid leukemia (AML). Young mice deficient in FA core complex genes do not naturally develop cancer, hampering preclinical studies on malignant hematopoiesis in FA. Here we describe that aging Fancc−/− mice are prone to genomically unstable AML and other hematologic neoplasms. We report that aneuploidy precedes malignant transformation during Fancc−/− hematopoiesis. Our observations reveal that Fancc−/− mice develop hematopoietic chromosomal instability followed by leukemia in an age-dependent manner, recapitulating the clinical phenotype of human FA and providing a proof of concept for future development of preclinical models of FA-associated leukemogenesis.Item TGFβ-Mediated induction of SphK1 as a potential determinant in human MDA-MB-231 breast cancer cell bone metastasis(SpringerNature, 2015-07-08) Stayrook, Keith R.; Mack, Justin K.; Cerabona, Donna; Edwards, Daniel F.; Bui, Hai H.; Niewolna, Maria; Fournier, Pierrick G.J.; Mohamma, Khalid S.; Waning, David L.; Guise, Theresa A.; Department of Pharmacology and Toxicology, IU School of MedicineMechanistic understanding of the preferential homing of circulating tumor cells to bone and their perturbation on bone metabolism within the tumor-bone microenvironment remains poorly understood. Alteration in both transforming growth factor β (TGFβ) signaling and sphingolipid metabolism results in the promotion of tumor growth and metastasis. Previous studies using MDA-MB-231 human breast cancer-derived cell lines of variable metastatic potential were queried for changes in sphingolipid metabolism genes to explore correlations between TGFβ dependence and bone metastatic behavior. Of these genes, only sphingosine kinase-1 (SPHK1) was identified to be significantly increased following TGFβ treatment. Induction of SPHK1 expression correlated to the degree of metastatic capacity in these MDA-MB-231-derived cell lines. We demonstrate that TGFβ mediates the regulation of SPHK1 gene expression, protein kinase activity and is critical to MDA-MB-231 cell viability. Furthermore, a bioinformatic analysis of human breast cancer gene expression supports SPHK1 as a hallmark TGFβ target gene that also bears the genetic fingerprint of the basal-like/triple-negative breast cancer molecular subtype. These data suggest a potential new signaling axis between TGFβ/SphK1 that may have a role in the development, prognosis or the clinical phenotype associated with tumor-bone metastasis.