- Browse by Author
Browsing by Author "Cellular & Integrative Physiology, School of Medicine"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser(Nature Publishing Group, 2014-11-04) Wang, Pu; Ma, Teng; Slipchenko, Mikhail N.; Liang, Shanshan; Hui, Jie; Shung, Kirk; Roy, Sukesh; Sturek, Michael; Zhou, Qifa; Chen, Zhongping; Cheng, Ji-Xin; Cellular & Integrative Physiology, School of MedicineLipid deposition inside the arterial wall is a key indicator of plaque vulnerability. An intravascular photoacoustic (IVPA) catheter is considered a promising device for quantifying the amount of lipid inside the arterial wall. Thus far, IVPA systems suffered from slow imaging speed (~50 s per frame) due to the lack of a suitable laser source for high-speed excitation of molecular overtone vibrations. Here, we report an improvement in IVPA imaging speed by two orders of magnitude, to 1.0 s per frame, enabled by a custom-built, 2-kHz master oscillator power amplifier (MOPA)-pumped, barium nitrite [Ba(NO3)2] Raman laser. This advancement narrows the gap in translating the IVPA technology to the clinical setting.Item Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns(Taylor & Francis, 2014-08) Tilton, Susan C.; Karin, Norman J.; Tolic, Ana; Xie, Yumei; Lai, Xianyin; Hamilton Jr., Raymond F.; Waters, Katrina M.; Holian, Andrij; Witzmann, Frank A.; Orr, Galya; Cellular & Integrative Physiology, School of MedicineThe growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. We conducted global transcriptome and proteome analyses of three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high vs. low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage like (THP-1), small airway epithelial (SAE), and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 μg/ml) and high (100 μg/ml) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p<0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell-type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might therefore indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p<0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT regulated pathways indicating increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might therefore underlie cellular responses to high and low NP toxicity, respectively.