- Browse by Author
Browsing by Author "Cellular and Integrative Physiology, School of Medicine"
Now showing 1 - 10 of 92
Results Per Page
Sort Options
Item 18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis(Springer Nature, 2018-11) McKenney-Drake, Mikaela L.; Moghbel, Mateen C.; Paydary, Koosha; Alloosh, Mouhamad; Houshmand, Sina; Moe, Sharon; Salavati, Ali; Sturek, Jeffrey M.; Territo, Paul R.; Weaver, Connie; Werner, Thomas J.; Høilund-Carlsen, Poul Flemming; Sturek, Michael; Alavi, Abass; Cellular and Integrative Physiology, School of MedicineThe early detection of atherosclerotic disease is vital to the effective prevention and management of life-threatening cardiovascular events such as myocardial infarctions and cerebrovascular accidents. Given the potential for positron emission tomography (PET) to visualize atherosclerosis earlier in the disease process than anatomic imaging modalities such as computed tomography (CT), this application of PET imaging has been the focus of intense scientific inquiry. Although 18F-FDG has historically been the most widely studied PET radiotracer in this domain, there is a growing body of evidence that 18F-NaF holds significant diagnostic and prognostic value as well. In this article, we review the existing literature on the application of 18F-FDG and 18F-NaF as PET probes in atherosclerosis and present the findings of original animal and human studies that have examined how well 18F-NaF uptake correlates with vascular calcification and cardiovascular risk.Item A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach(BMC, 2022-08-12) Singh, Jaipal; Lee, Young; Kellum, John A.; Cellular and Integrative Physiology, School of MedicineThe nitric oxide pathway plays a critical role in vascular homeostasis. Increased levels of systemic nitric oxide (NO) are observed in preclinical models of sepsis and endotoxemia. This has led to the postulation that vasodilation by inducible nitric oxide synthase (iNOS) generated NO may be a mechanism of hypotension in sepsis. However, contrary to the expected pharmacological action of a nitric oxide synthase (NOS) inhibitor, clinical studies with L-NAME produced adverse cardiac and pulmonary events, and higher mortality in sepsis patients. Thus, the potential adverse effects of NO in human sepsis and shock have not been fully established. In recent years, the emerging new understanding of the NO pathway has shown that an endogenously produced inhibitor of NOS, asymmetric dimethylarginine (ADMA), a host response to infection, may play an important role in the pathophysiology of sepsis as well as organ damage during ischemia-reperfusion. ADMA induces microvascular dysfunction, proinflammatory and prothrombotic state in endothelium, release of inflammatory cytokines, oxidative stress and mitochondrial dysfunction. High levels of ADMA exist in sepsis patients, which may produce adverse effects like those observed with L-NAME. Several studies have demonstrated the association of plasma ADMA levels with mortality in sepsis patients. Preclinical studies in sepsis and ischemia-reperfusion animal models have shown that lowering of ADMA reduced organ damage and improved survival. The clinical finding with L-NAME and the preclinical research on ADMA "bed to bench" suggest that ADMA lowering could be a potential therapeutic approach to attenuate progressive organ damage and mortality in sepsis. Testing of this approach is now feasible by using the pharmacological molecules that specifically lower ADMA.Item Adult Ossabaw Pigs Prefer Fermented Sorghum Tea over Isocaloric Sweetened Water(MDPI, 2023-10-18) Nelson, Catherine E.; Aramouni, Fadi M.; Goering, Mikayla J.; Bortoluzzi, Eduarda M.; Knapp, Laura A.; Herrera-Ibata, Diana M.; Li, Ka Wang; Jermoumi, Rabia; Hooker, Jane A.; Sturek, Joshua; Byrd, James P; Wu, Hui; Trinetta, Valentina; Alloosh, Mouhamad; Sturek, Michael; Jaberi-Douraki, Majid; Hulbert, Lindsey E.; Cellular and Integrative Physiology, School of MedicineOssabaw pigs (n = 11; 5-gilts, 6-barrows; age 15.6 ± 0.62 SD months) were exposed to a three-choice preference maze to evaluate preference for fermented sorghum teas (FSTs). After conditioning, pigs were exposed, in four sessions, to choices of white FST, sumac FST, and roasted sumac-FST. Then, pigs were exposed, in three sessions, to choices of deionized H2O (-control; avoidance), isocaloric control (+control; deionized H2O and sucrose), and blended FST (3Tea) (equal portions: white, sumac, and roasted sumac). When tea type was evaluated, no clear preference behaviors for tea type were observed (p > 0.10). When the 3Tea and controls were evaluated, pigs consumed minimal control (p < 0.01;18.0 ± 2.21% SEM), and they consumed great but similar volumes of +control and 3Tea (96.6 and 99.0 ± 2.21% SEM, respectively). Likewise, head-in-bowl duration was the least for -control, but 3Tea was the greatest (p < 0.01; 5.6 and 31.9 ± 1.87% SEM, respectively). Head-in-bowl duration for +control was less than 3Tea (p < 0.01; 27.6 vs. 31.9 ± 1.87% SEM). Exploration duration was the greatest in the area with the -control (p < 0.01; 7.1 ± 1.45% SEM), but 3Tea and +control exploration were not different from each other (1.4 and 3.0 ± 1.45% SEM, respectively). Regardless of tea type, adult pigs show preference for FST, even over +control. Adult pigs likely prefer the complexity of flavors, rather than the sweetness alone.Item Antibody Screening Using a Human iPSC-based Blood-Brain Barrier Model Identifies Antibodies that Accumulate in the CNS(Wiley, 2020-09) Georgieva, Julia V.; Goulatis, Loukas I.; Stutz, Charles C.; Canfield, Scott G.; Song, Hannah W.; Gastfriend, Benjamin D.; Shusta, Eric V.; Cellular and Integrative Physiology, School of MedicineDrug delivery across the blood-brain barrier (BBB) remains a significant obstacle for the development of neurological disease therapies. The low penetration of blood-borne therapeutics into the brain can oftentimes be attributed to the restrictive nature of the brain microvascular endothelial cells (BMECs) that comprise the BBB. One strategy beginning to be successfully leveraged is the use of endogenous receptor-mediated transcytosis (RMT) systems as a means to shuttle a targeted therapeutic into the brain. Limitations of known RMT targets and their cognate targeting reagents include brain specificity, brain uptake levels, and off-target effects, driving the search for new and potentially improved brain targeting reagent-RMT pairs. To this end, we deployed human-induced pluripotent stem cell (iPSC)-derived BMEC-like cells as a model BBB substrate on which to mine for new RMT-targeting antibody pairs. A nonimmune, human single-chain variable fragment (scFv) phage display library was screened for binding, internalization, and transcytosis across iPSC-derived BMECs. Lead candidates exhibited binding and internalization into BMECs as well as binding to both human and mouse BBB in brain tissue sections. Antibodies targeted the murine BBB after intravenous administration with one particular clone, 46.1-scFv, exhibiting a 26-fold increase in brain accumulation (8.1 nM). Moreover, clone 46.1-scFv was found to associate with postvascular, parenchymal cells, indicating its successful receptor-mediated transport across the BBB. Such a new BBB targeting ligand could enhance the transport of therapeutic molecules into the brain.Item Argonaute 2 Expression Correlates with a Luminal B Breast Cancer Subtype and Induces Estrogen Receptor Alpha Isoform Variation(MDPI, 2016-09-21) Conger, Adrienne K.; Martin, Elizabeth C.; Yan, Thomas J.; Rhodes, Lyndsay V.; Hoang, Van T.; La, Jacqueline; Anbalagan, Muralidharan; Burks, Hope E.; Rowan, Brian G.; Nephew, Kenneth P.; Collins-Burow, Bridgette M.; Burow, Matthew E.; Cellular and Integrative Physiology, School of MedicineEstrogen receptor alpha (ERα) signaling pathways are frequently disrupted in breast cancer and contribute to disease progression. ERα signaling is multifaceted and many ERα regulators have been identified including transcription factors and growth factor pathways. More recently, microRNAs (miRNAs) are shown to deregulate ERα activity in breast carcinomas, with alterations in both ERα and miRNA expression correlating to cancer progression. In this study, we show that a high expression of Argonaute 2 (AGO2), a translation regulatory protein and mediator of miRNA function, correlates with the luminal B breast cancer subtype. We further demonstrate that a high expression of AGO2 in ERα+ tumors correlates with a poor clinical outcome. MCF-7 breast cancer cells overexpressing AGO2 (MCF7-AGO2) altered ERα downstream signaling and selective ERα variant expression. Enhanced ERα-36, a 36 kDa ERα isoform, protein and gene expression was observed in vitro. Through quantitative polymerase chain reaction (qPCR), we demonstrate decreased basal expression of the full-length ERα and progesterone receptor genes, in addition to loss of estrogen stimulated gene expression in vitro. Despite the loss, MCF-7-AGO2 cells demonstrated increased estrogen stimulated tumorigenesis in vivo. Together with our clinical findings on AGO2 expression and the luminal B subtype, we suggest that AGO2 is a regulator of altered ERα signaling in breast tumors.Item Cardiovascular consequences of metabolic syndrome(Elsevier, 2017-05) Tune, Johnathan D.; Goodwill, Adam G.; Sassoon, Daniel J.; Mather, Kieren J.; Cellular and Integrative Physiology, School of MedicineThe metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.Item Catechol estrogens stimulate insulin secretion in pancreatic β-cells via activation of the transient receptor potential A1 (TRPA1) channel(American Society for Biochemistry and Molecular Biology, 2019-02-22) Ma, Wenzhen; Chen, Xingjuan; Cerne, Rok; Syed, Samreen K.; Ficorilli, James V.; Cabrera, Over; Obukhov, Alexander G.; Efanov, Alexander M.; Cellular and Integrative Physiology, School of MedicineEstrogen hormones play an important role in controlling glucose homeostasis and pancreatic β-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic β-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic β-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases.Item Combining varenicline (Chantix) with naltrexone decreases alcohol drinking more effectively than does either drug alone in a rodent model of alcoholism(Wiley, 2016-09) Froehlich, Janice C.; Fischer, Stephen M.; Dilley, Julian E.; Nicholson, Emily; Smith, Teal; Filosa, Nick; Rademacher, Logan; Cellular and Integrative Physiology, School of MedicineBackground This study examined whether varenicline (VAR), or naltrexone (NTX), alone or in combination, reduces alcohol drinking in alcohol-preferring (P) rats with a genetic predisposition toward high voluntary alcohol intake. Methods Alcohol experienced P rats that had been drinking alcohol (15% v/v) for 2 hrs/day for 4 weeks were fed either vehicle (VEH), VAR alone (0.5, 1.0 or 2.0 mg/kg BW), NTX alone (10.0, 15.0 or 20.0 mg/kg BW) or VAR + NTX in one of four dose combinations (0.5 VAR + 10.0 NTX, 0.5 VAR + 15.0 NTX, 1.0 VAR + 10.0 NTX, or 1.0 VAR + 15.0 NTX) at 1 hour prior to alcohol access for 10 consecutive days and the effects on alcohol intake were assessed. Results When administered alone, VAR in doses of 0.5 or 1.0 mg/kg BW did not alter alcohol intake but a dose of 2.0 mg/kg BW decreased alcohol intake. This effect disappeared when drug treatment was terminated. NTX in doses of 10.0 and 15.0 mg/kg BW did not alter alcohol intake but a dose of 20.0 mg/kg BW decreased alcohol intake. Combining low doses of VAR and NTX into a single medication reduced alcohol intake as well as did high doses of each drug alone. Reduced alcohol intake occurred immediately after onset of treatment with the combined medication and continued throughout prolonged treatment. Conclusions Low doses of VAR and NTX, when combined in a single medication, reduce alcohol intake in a rodent model of alcoholism. This approach has the advantage of reducing potential side effects associated with each drug. Lowering the dose of NTX and VAR in a combined treatment approach that maintains efficacy while reducing the incidence of negative side-effects may increase patient compliance and improve clinical outcomes for alcoholics and heavy drinkers who want to reduce their alcohol intake.Item Comparative Quantification of Arterial Lipid by Intravascular Photoacoustic-Ultrasound Imaging and Near-Infrared Spectroscopy-Intravascular Ultrasound(Springer, 2018-11-28) Kole, Ayeeshik; Cao, Yingchun; Hui, Jie; Bolad, Islam A.; Alloosh, Mouhamad; Cheng, Ji-Xin; Sturek, Michael; Cellular and Integrative Physiology, School of MedicineIntravascular photoacoustic-ultrasound (IVPA-US) imaging and near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) are two hybrid modalities that detect arterial lipid, with comparison necessary to understand the relative advantages of each. We performed in vivo and ex vivo IVPA-US imaging of the iliac arteries of Ossabaw swine with metabolic syndrome (MetS) and lean swine to investigate sensitivity for early-stage atherosclerosis. We repeated imaging ex vivo with NIRS-IVUS for comparison to IVPA-US and histology. Both modalities showed significantly greater lipid in MetS vs. lean swine, but only IVPA-US localized the lipid as perivascular. To investigate late-stage atherosclerosis, we performed ex vivo IVPA-US imaging of a human coronary artery with comparison to NIRS-IVUS and histology. Two advanced fibroatheromas were identified, with agreement between IVPA-measured lipid area and NIRS-derived lipid content. As confirmed histologically, IVPA-US has sensitivity to detect lipid content similar to NIRS-IVUS and provides additional depth resolution, enabling quantification and localization of lipid cores within plaques.Item Correction to: An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons(BioMed Central, 2019-09-10) Canfield, Scott G.; Stebbins, Matthew J.; Faubion, Madeline G.; Gastfriend, Benjamin D.; Palecek, Sean P.; Shusta, Eric V.; Cellular and Integrative Physiology, School of MedicineAbstract Following publication of the original article [1], the author has reported that in Figure 1 (b and c) the y-axis TEER (© x cm2) should be replaced with TEER (Ω x cm2). Erratum for An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. [Fluids Barriers CNS. 2019]