- Browse by Author
Browsing by Author "Ceci, Ludovica"
Now showing 1 - 10 of 26
Results Per Page
Sort Options
Item Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethal-7 microRNA(Wiley, 2019-02-05) McDaniel, Kelly; Wu, Nan; Zhou, Tianhao; Huang, Li; Sato, Keisaku; Venter, Julie; Ceci, Ludovica; Chen, Demeng; Ramos‐Lorenzo, Sugeily; Invernizzi, Pietro; Bernuzzi, Francesca; Wu, Chaodong; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; Meng, Fanyin; Medicine, School of MedicineCholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem cell–derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 2 (MDR2)−/− mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further evaluation of let-7 in MDR2−/− mice and human primary sclerosing cholangitis samples showed reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2−/− mice, but treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had reduced levels of fibrosis and increased senescence. Conclusion: Our studies indicate that LSCEVs could be a possible treatment for cholangiopathies or could be used for target validation for future therapies.Item Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis(Elsevier, 2024) Ceci, Ludovica; Gaudio, Eugenio; Kennedy, Lindsey; Medicine, School of MedicineBiliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.Item Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy(Taylor & Francis, 2021) Baiocchi, Leonardo; Sato, Keisaku; Ekser, Burcin; Kennedy, Lindsey; Francis, Heather; Ceci, Ludovica; Lenci, Ilaria; Alvaro, Domenico; Franchitto, Antonio; Onori, Paolo; Gaudio, Eugenio; Wu, Chaodong; Chakraborty, Sanjukta; Glaser, Shannon; Alpini, Gianfranco; Medicine, School of MedicineIntroduction: Cholangiocarcinoma (CCA) is a devastating liver tumor with a poor prognosis. While less than 50% of patients with CCA may benefit from surgical resection, the rest undergoes chemotherapy with disappointing results (mean survival <2 years). Alternative pharmacological treatments are needed to improve the outcomes in patients with CCA. Areas covered: In this review, we discuss CCA-related: i) experimental systems used in preclinical studies; ii) pharmacological targets identified by genetic analysis; iii) results obtained in preliminary trials in human with their pros and cons; and iv) possible targeting of endocrinal modulation. A PubMed bibliographic search matching the term “cholangiocarcinoma” with “experimental model”, “preclinical model”, “genetic target”, “targeted therapy”, “clinical trial” or “translational research” was conducted and manuscripts published between 2010 and 2020 were retrieved for reading and reviewing. Expert opinion: Several factors contribute to the translational gap between bench research and clinical practice in CCA. The tumor heterogeneity, lack of a preclinical model recapitulating the different features of CCA, and difficult patient enrollment in clinical trials are elements to consider for basic and clinical research in CCA. Establishment of international networks formed by experts in the field of CCA may improve future research and its translational findings on patients.Item Cyclic AMP Signaling in Biliary Proliferation: A Possible Target for Cholangiocarcinoma Treatment?(MDPI, 2021-07-04) Baiocchi, Leonardo; Lenci, Ilaria; Milana, Martina; Kennedy, Lindsey; Sato, Keisaku; Zhang, Wenjun; Ekser, Burcin; Ceci, Ludovica; Meadows, Vik; Glaser, Shannon; Alpini, Gianfranco; Francis, Heather; Medicine, School of MedicineCholangiocarcinoma is a lethal disease with scarce response to current systemic therapy. The rare occurrence and large heterogeneity of this cancer, together with poor knowledge of its molecular mechanisms, are elements contributing to the difficulties in finding an appropriate cure. Cholangiocytes (and their cellular precursors) are considered the liver component giving rise to cholangiocarcinoma. These cells respond to several hormones, neuropeptides and molecular stimuli employing the cAMP/PKA system for the translation of messages in the intracellular space. For instance, in physiological conditions, stimulation of the secretin receptor determines an increase of intracellular levels of cAMP, thus activating a series of molecular events, finally determining in bicarbonate-enriched choleresis. However, activation of the same receptor during cholangiocytes' injury promotes cellular growth again, using cAMP as the second messenger. Since several scientific pieces of evidence link cAMP signaling system to cholangiocytes' proliferation, the possible changes of this pathway during cancer growth also seem relevant. In this review, we summarize the current findings regarding the cAMP pathway and its role in biliary normal and neoplastic cell proliferation. Perspectives for targeting the cAMP machinery in cholangiocarcinoma therapy are also discussed.Item Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis(Cognizant Communication Corporation, 2020-11) Kyritsi, Konstantina; Francis, Heather; Zhou, Tianhao; Ceci, Ludovica; Wu, Nan; Yang, Zhihong; Meng, Fanyin; Chen, Lixian; Baiocchi, Leonardo; Kundu, Debjyoti; Kennedy, Lindsey; Liangpunsakul, Suthat; Wu, Chaodong; Glaser, Shannon; Alpini, Gianfranco; Medicine, School of MedicineBiliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes.Item The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling(MDPI, 2022-05-09) Mancinelli, Romina; Ceci, Ludovica; Kennedy, Lindsey; Francis, Heather; Meadows, Vik; Chen, Lixian; Carpino, Guido; Kyritsi, Konstantina; Wu, Nan; Zhou, Tianhao; Sato, Keisaku; Pannarale, Luigi; Glaser, Shannon; Chakraborty, Sanjukta; Alpini, Gianfranco; Gaudio, Eugenio; Onori, Paolo; Franchitto, Antonio; Medicine, School of MedicineBackground & aims: Cholangiocytes are the target cells of liver diseases that are characterized by biliary senescence (evidenced by enhanced levels of senescence-associated secretory phenotype, SASP, e.g., TGF-β1), and liver inflammation and fibrosis accompanied by altered bile acid (BA) homeostasis. Taurocholic acid (TC) stimulates biliary hyperplasia by activation of 3',5'-cyclic cyclic adenosine monophosphate (cAMP) signaling, thereby preventing biliary damage (caused by cholinergic/adrenergic denervation) through enhanced liver angiogenesis. Also: (i) α-calcitonin gene-related peptide (α-CGRP, which activates the calcitonin receptor-like receptor, CRLR), stimulates biliary proliferation/senescence and liver fibrosis by enhanced biliary secretion of SASPs; and (ii) knock-out of α-CGRP reduces these phenotypes by decreased cAMP levels in cholestatic models. We aimed to demonstrate that TC effects on liver phenotypes are dependent on changes in the α-CGRP/CALCRL/cAMP/PKA/ERK1/2/TGF-β1/VEGF axis. Methods: Wild-type and α-CGRP-/- mice were fed with a control (BAC) or TC diet for 1 or 2 wk. We measured: (i) CGRP levels by both ELISA kits in serum and by qPCR in isolated cholangiocytes (CALCA gene for α-CGRP); (ii) CALCRL immunoreactivity by immunohistochemistry (IHC) in liver sections; (iii) liver histology, intrahepatic biliary mass, biliary senescence (by β-GAL staining and double immunofluorescence (IF) for p16/CK19), and liver fibrosis (by Red Sirius staining and double IF for collagen/CK19 in liver sections), as well as by qPCR for senescence markers in isolated cholangiocytes; and (iv) phosphorylation of PKA/ERK1/2, immunoreactivity of TGF-β1/TGF- βRI and angiogenic factors by IHC/immunofluorescence in liver sections and qPCR in isolated cholangiocytes. We measured changes in BA composition in total liver by liquid chromatography/mass spectrometry. Results: TC feeding increased CALCA expression, biliary damage, and liver inflammation and fibrosis, as well as phenotypes that were associated with enhanced immunoreactivity of the PKA/ERK1/2/TGF-β1/TGF-βRI/VEGF axis compared to BAC-fed mice and phenotypes that were reversed in α-CGRP-/- mice fed TC coupled with changes in hepatic BA composition. Conclusion: Modulation of the TC/ α-CGRP/CALCRL/PKA/ERK1/2/TGF-β1/VEGF axis may be important in the management of cholangiopathies characterized by BA accumulation.Item FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2-/- Mouse Model of Primary Sclerosing Cholangitis(Wolters Kluwer, 2022) O’Brien, April; Zhou, Tianhao; White, Tori; Medford, Abigail; Chen, Lixian; Kyritsi, Konstantina; Wu, Nan; Childs, Jonathan; Stiles, Danaleigh; Ceci, Ludovica; Chakraborty, Sanjukta; Ekser, Burcin; Baiocchi, Leonardo; Carpino, Guido; Gaudio, Eugenio; Wu, Chaodong; Kennedy, Lindsey; Francis, Heather; Alpini, Gianfranco; Glaser, Shannon; Medicine, School of MedicineFibroblast growth factor 1 (FGF1) belongs to a family of growth factors involved in cellular growth and division. MicroRNA 16 (miR-16) is a regulator of gene expression, which is dysregulated during liver injury and insult. However, the role of FGF1 in the progression of biliary proliferation, senescence, fibrosis, inflammation, angiogenesis, and its potential interaction with miR-16, are unknown. In vivo studies were performed in male bile duct-ligated (BDL, 12-week-old) mice, multidrug resistance 2 knockout (Mdr2-/-) mice (10-week-old), and their corresponding controls, treated with recombinant human FGF1 (rhFGF1), fibroblast growth factor receptor (FGFR) antagonist (AZD4547), or anti-FGF1 monoclonal antibody (mAb). In vitro, the human cholangiocyte cell line (H69) and human hepatic stellate cells (HSCs) were used to determine the expression of proliferation, fibrosis, angiogenesis, and inflammatory genes following rhFGF1 treatment. PSC patient and control livers were used to evaluate FGF1 and miR-16 expression. Intrahepatic bile duct mass (IBDM), along with hepatic fibrosis and inflammation, increased in BDL mice treated with rhFGF1, with a corresponding decrease in miR-16, while treatment with AZD4547 or anti-FGF1 mAb decreased hepatic fibrosis, IBDM, and inflammation in BDL and Mdr2-/- mice. In vitro, H69 and HSCs treated with rhFGF1 had increased expression of proliferation, fibrosis, and inflammatory markers. PSC samples also showed increased FGF1 and FGFRs with corresponding decreases in miR-16 compared with healthy controls. Conclusion: Our study demonstrates that suppression of FGF1 and miR-16 signaling decreases the presence of hepatic fibrosis, biliary proliferation, inflammation, senescence, and angiogenesis. Targeting the FGF1 and miR-16 axis may provide therapeutic options in treating cholangiopathies such as PSC.Item Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury(AASLD, 2020-12) Wu, Nan; Baiocchi, Leonardo; Zhou, Tianhao; Kennedy, Lindsey; Ceci, Ludovica; Meng, Fanyin; Sato, Keisaku; Wu, Chaodong; Ekser, Burcin; Kyritsi, Konstantina; Kundu, Debjyoti; Chen, Lixian; Meadows, Vik; Franchitto, Antonio; Alvaro, Domenico; Onori, Paolo; Gaudio, Eugenio; Lenci, Ilaria; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; Medicine, School of MedicineLiver diseases are a major health concern and affect a large proportion of people worldwide. There are over 100 types of liver disorders, including cirrhosis, cholangiocarcinoma (CCA), hepatocellular carcinoma, and hepatitis. Despite the relevant number of people who are affected by liver diseases, and the increased awareness with regard to these disorders, the number of deaths corresponding to liver injury is expected to increase in the foreseeable future. One of the possible reasons for this is that a complete comprehension of the mechanisms of hepatic damage involving specific liver anatomical districts is lacking, and, as a consequence, current treatments available are suboptimal. A major burden in the clinical setting are chronic cholestatic liver diseases (e.g., primary biliary cholangitis [PBC], primary sclerosing cholangitis [PSC], biliary atresia), which target the biliary epithelium and are characterized by cholestasis.(1, 2) Because the secretin (Sct)/secretin receptor (SR) axis (expressed only by cholangiocytes in the liver)(3, 4) is the major regulator of ductal bile secretion,(5, 6) it is intuitive that this axis plays a key role in the maintenance of biliary homeostasis during the progression of cholangiopathies. For instance, PBC is characterized by reduced bicarbonate secretion, a phenomenon possibly impeding the formation of an HCO3 canalicular film (“bicarbonate umbrella”) on bile ducts, which has protective properties against highly concentrated bile acids (BAs).(1, 7, 8) In this review, we examined the molecular mechanisms by which the Sct/SR axis regulates biliary function and the homeostasis of the biliary epithelium in normal and pathophysiological conditions.Item Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes(Wiley, 2021-10) Chen, Lixian; Wu, Nan; Kennedy, Lindsey; Francis, Heather; Ceci, Ludovica; Zhou, Tianhao; Samala, Niharika; Kyritsi, Konstantina; Wu, Chaodong; Sybenga, Amelia; Ekser, Burcin; Dar, Wasim; Atkins, Constance; Meadows, Vik; Glaser, Shannon; Alpini, Gianfranco; Surgery, School of MedicineBackground & Aims Human non-alcoholic fatty liver disease (NAFLD) is characterized at early stages by hepatic steatosis, which may progress to nonalcoholic steatohepatitis (NASH) when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through downregulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence and liver fibrosis in NAFLD/NASH. Approach & Results In vivo, 4 wk male WT, Sct-/- and Sctr-/- mice were fed a control diet (CD) or high-fat diet (HFD) for 16 wks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry (IHC) and qPCR. Biliary/hepatocyte senescence, ductular reaction and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between WT mice and Sct-/-/Sctr-/- mice. Conclusion The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by upregulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.Item Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2-/- mouse model of primary sclerosing cholangitis (PSC)(Elsevier, 2019-10) Zhou, Tianhao; Kyritsi, Konstantina; Wu, Nan; Francis, Heather; Yang, Zhihong; Chen, Lixian; O'Brien, April; Kennedy, Lindsey; Ceci, Ludovica; Meadows, Vik; Kusumanchi, Praveen; Wu, Chaodong; Baiocchi, Leonardo; Skill, Nicholas J.; Saxena, Romil; Sybenga, Amelia; Xie, Linglin; Liangpunsakul, Suthat; Meng, Fanyin; Alpini, Gianfranco; Glaser, Shannon; Medicine, School of MedicineBACKGROUND: Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS: In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS: There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION: Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
- «
- 1 (current)
- 2
- 3
- »