- Browse by Author
Browsing by Author "Catenacci, Daniel V. T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A pan-cancer organoid platform for precision medicine(Elsevier, 2021) Larsen, Brian M.; Kannan, Madhavi; Langer, Lee F.; Leibowitz, Benjamin D.; Bentaieb, Aicha; Cancino, Andrea; Dolgalev, Igor; Drummond, Bridgette E.; Dry, Jonathan R.; Ho, Chi-Sing; Khullar, Gaurav; Krantz, Benjamin A.; Mapes, Brandon; McKinnon, Kelly E.; Metti, Jessica; Perera, Jason F.; Rand, Tim A.; Sanchez-Freire, Veronica; Shaxted, Jenna M.; Stein, Michelle M.; Streit, Michael A.; Tan, Yi-Hung Carol; Zhang, Yilin; Zhao, Ende; Venkataraman, Jagadish; Stumpe, Martin C.; Borgia, Jeffrey A.; Masood, Ashiq; Catenacci, Daniel V. T.; Mathews, Jeremy V.; Gursel, Demirkan B.; Wei, Jian-Jun; Welling, Theodore H.; Simeone, Diane M.; White, Kevin P.; Khan, Aly A.; Igartua, Catherine; Salahudeen, Ameen A.; Medicine, School of MedicinePatient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.Item Clinical Assessment of 5-Fluorouracil/Leucovorin, Nab-Paclitaxel, and Irinotecan (FOLFIRABRAX) in Untreated Patients with Gastrointestinal Cancer Using UGT1A1 Genotype–Guided Dosing(American Association for Cancer Research, 2020-01-01) Joshi, Smita S.; Catenacci, Daniel V. T.; Karrison, Theodore G.; Peterson, Jaclyn D.; Zalupski, Mark M.; Sehdev, Amikar; Wade, James; Sadiq, Ahad; Picozzi, Vincent J.; Amico, Andrea; Marsh, Robert; Kozloff, Mark F.; Polite, Blase N.; Kindler, Hedy L.; Sharma, Manish R.; Medicine, School of MedicinePurpose: 5-fluorouracil/leucovorin, irinotecan, and nab-paclitaxel are all active agents in gastrointestinal cancers; the combination, FOLFIRABRAX, has not been previously evaluated. UDP Glucuronosyltransferase 1A1 (UGT1A1) clears SN-38, the active metabolite of irinotecan. UGT1A1*28 polymorphism reduces UGT1A1 enzymatic activity and predisposes to toxicity. We performed a trial to assess the safety and tolerability of FOLFIRABRAX with UGT1A1 genotype-guided dosing of irinotecan. Experimental Design: Patients with previously untreated, advanced gastrointestinal cancers received FOLFIRABRAX with prophylactic pegfilgrastim every 14 days. UGT1A1 *1/*1, *1/*28, and *28/*28 patients received initial irinotecan doses of 180, 135, and 90 mg/m2, respectively. 5-FU 2400 mg/m2 over 46 hours, leucovorin 400 mg/m2, and nab-paclitaxel 125 mg/m2 were administered. Doses were deemed tolerable if the dose limiting toxicity (DLT) rate during cycle 1 was ≤35% in each genotype group. DLTs were monitored using a sequential procedure. Results: Fifty patients enrolled: 30 pancreatic, 9 biliary tract, 6 gastroesophageal, and 5 others. DLTs occurred in 5/23 (22%) *1/*1 patients, 1/19 (5%) *1/*28 patients, and 0/7 *28/*28 patients. DLTs were all grade 3: diarrhea (3 patients), nausea (2 patients), and febrile neutropenia (1 patient). The overall response rate was 31%. Response rates in pancreatic, gastroesophageal, and biliary tract cancers were 34%, 50%, and 11%, respectively. Eighteen patients (36%) received therapy for at least 24 weeks. Conclusion: FOLFIRABRAX with genotype-guided dosing of irinotecan is tolerable in patients with advanced gastrointestinal cancer and UGT1A1*1*1 or UGT1A1*1*28 genotypes. Too few *28/*28 patients were enrolled to provide conclusive results. Responses occurred across multiple tumor types.