- Browse by Author
Browsing by Author "Carson, April P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Lifecourse socioeconomic position and diabetes incidence in the REasons for Geographic and Racial Differences in Stroke (REGARDS) study, 2003 to 2016(Elsevier, 2021-12) Martin, Kimberly D.; Beckles, Gloria L.; Wu, Chengyi; McClure, Leslie A.; Carson, April P.; Bennett, Aleena; Bullard, Kai McKeever; Glymour, Maria; Unverzagt, Fred; Cunningham, Solveig; Imperatore, Giuseppina; Howard, Virginia J.; Psychiatry, School of MedicineLow socioeconomic position (SEP) across the lifecourse is associated with Type 2 diabetes (T2DM). We examined whether these economic disparities differ by race and sex. We included 5448 African American (AA) and white participants aged ≥45 years from the national (United States) REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort without T2DM at baseline (2003–07). Incident T2DM was defined by fasting glucose ≥126 mg/dL, random glucose ≥200 mg/dL, or using T2DM medications at follow-up (2013–16). Derived SEP scores in childhood (CSEP) and adulthood (ASEP) were used to calculate a cumulative (CumSEP) score. Social mobility was defined as change in SEP. We fitted race-stratified logistic regression models to estimate the association between each lifecourse SEP indicator and T2DM, adjusting for covariates; additionally, we tested SEP-sex interactions. Over a median of 9.0 (range 7–14) years of follow-up, T2DM incidence was 167.1 per 1000 persons among AA and 89.9 per 1000 persons among white participants. Low CSEP was associated with T2DM incidence among AA (OR = 1.61; 95%CI 1.05–2.46) but not white (1.06; 0.74–2.33) participants; this was attenuated after adjustment for ASEP. In contrast, low CumSEP was associated with T2DM incidence for both racial groups. T2DM risk was similar for stable low SEP and increased for downward mobility when compared with stable high SEP in both groups, whereas upward mobility increased T2DM risk among AAs only. No differences by sex were observed. Among AAs, low CSEP was not independently associated with T2DM, but CSEP may shape later-life experiences and health risks.Item Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study(medRxiv, 2023-06-29) Wang, Yuxuan; Selvaraj, Margaret Sunitha; Li, Xihao; Li, Zilin; Holdcraft, Jacob A.; Arnett, Donna K.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Cade, Brian E.; Carlson, Jenna C.; Carson, April P.; Chen, Yii-Der Ida; Curran, Joanne E.; de Vries, Paul S.; Dutcher, Susan K.; Ellinor, Patrick T.; Floyd, James S.; Fornage, Myriam; Freedman, Barry I.; Gabriel, Stacey; Germer, Soren; Gibbs, Richard A.; Guo, Xiuqing; He, Jiang; Heard-Costa, Nancy; Hildalgo, Bertha; Hou, Lifang; Irvin, Marguerite R.; Joehanes, Roby; Kaplan, Robert C.; Kardia, Sharon Lr.; Kelly, Tanika N.; Kim, Ryan; Kooperberg, Charles; Kral, Brian G.; Levy, Daniel; Li, Changwei; Liu, Chunyu; Lloyd-Jone, Don; Loos, Ruth Jf.; Mahaney, Michael C.; Martin, Lisa W.; Mathias, Rasika A.; Minster, Ryan L.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Murabito, Joanne M.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Preuss, Michael H.; Psaty, Bruce M.; Raffield, Laura M.; Rao, Dabeeru C.; Redline, Susan; Reiner, Alexander P.; Rich, Stephen S.; Ruepena, Muagututi'a Sefuiva; Sheu, Wayne H-H; Smith, Jennifer A.; Smith, Albert; Tiwari, Hemant K.; Tsai, Michael Y.; Viaud-Martinez, Karine A.; Wang, Zhe; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Rotter, Jerome I.; Lin, Xihong; Natarajan, Pradeep; Peloso, Gina M.; Biostatistics and Health Data Science, School of MedicineLong non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.Item Whole Genome Sequencing Analysis of Body Mass Index Identifies Novel African Ancestry-Specific Risk Allele(medRxiv, 2023-08-22) Zhang, Xinruo; Brody, Jennifer A.; Graff, Mariaelisa; Highland, Heather M.; Chami, Nathalie; Xu, Hanfei; Wang, Zhe; Ferrier, Kendra; Chittoor, Geetha; Josyula, Navya S.; Li, Xihao; Li, Zilin; Allison, Matthew A.; Becker, Diane M.; Bielak, Lawrence F.; Bis, Joshua C.; Boorgula, Meher Preethi; Bowden, Donald W.; Broome, Jai G.; Buth, Erin J.; Carlson, Christopher S.; Chang, Kyong-Mi; Chavan, Sameer; Chiu, Yen-Feng; Chuang, Lee-Ming; Conomos, Matthew P.; DeMeo, Dawn L.; Du, Margaret; Duggirala, Ravindranath; Eng, Celeste; Fohner, Alison E.; Freedman, Barry I.; Garrett, Melanie E.; Guo, Xiuqing; Haiman, Chris; Heavner, Benjamin D.; Hidalgo, Bertha; Hixson, James E.; Ho, Yuk-Lam; Hobbs, Brian D.; Hu, Donglei; Hui, Qin; Hwu, Chii-Min; Jackson, Rebecca D.; Jain, Deepti; Kalyani, Rita R.; Kardia, Sharon L. R.; Kelly, Tanika N.; Lange, Ethan M.; LeNoir, Michael; Li, Changwei; Marchand, Loic Le; McDonald, Merry-Lynn N.; McHugh, Caitlin P.; Morrison, Alanna C.; Naseri, Take; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; O'Connell, Jeffrey; O'Donnell, Christopher J.; Palmer, Nicholette D.; Pankow, James S.; Perry, James A.; Peters, Ulrike; Preuss, Michael H.; Rao, D. C.; Regan, Elizabeth A.; Reupena, Sefuiva M.; Roden, Dan M.; Rodriguez-Santana, Jose; Sitlani, Colleen M.; Smith, Jennifer A.; Tiwari, Hemant K.; Vasan, Ramachandran S.; Wang, Zeyuan; Weeks, Daniel E.; Wessel, Jennifer; Wiggins, Kerri L.; Wilkens, Lynne R.; Wilson, Peter W. F.; Yanek, Lisa R.; Yoneda, Zachary T.; Zhao, Wei; Zöllner, Sebastian; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Blangero, John; Boerwinkle, Eric; Burchard, Esteban G.; Carson, April P.; Chasman, Daniel I.; Chen, Yii-Der Ida; Curran, Joanne E.; Fornage, Myriam; Gordeuk, Victor R.; He, Jiang; Heckbert, Susan R.; Hou, Lifang; Irvin, Marguerite R.; Kooperberg, Charles; Minster, Ryan L.; Mitchell, Braxton D.; Nouraie, Mehdi; Psaty, Bruce M.; Raffield, Laura M.; Reiner, Alexander P.; Rich, Stephen S.; Rotter, Jerome I.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Taylor, Kent D.; Telen, Marilyn J.; Weiss, Scott T.; Zhang, Yingze; Heard-Costa, Nancy; Sun, Yan V.; Lin, Xihong; Cupples, L. Adrienne; Lange, Leslie A.; Liu, Ching-Ti; Loos, Ruth J. F.; North, Kari E.; Justice, Anne E.; Biostatistics and Health Data Science, School of MedicineObesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10−9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.