ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Carr, Adam J."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genetic Variants of Phospholipase C-γ2 Alter the Phenotype and Function of Microglia and Confer Differential Risk for Alzheimer’s Disease
    (Elsevier, 2023) Tsai, Andy P.; Dong, Chuanpeng; Lin, Peter Bor-Chian; Oblak, Adrian L.; Di Prisco, Gonzalo Viana; Wang, Nian; Hajicek, Nicole; Carr, Adam J.; Lendy, Emma K.; Hahn, Oliver; Atkins, Micaiah; Foltz, Aulden G.; Patel, Jheel; Xu, Guixiang; Moutinho, Miguel; Sondek, John; Zhang, Qisheng; Mesecar, Andrew D.; Liu, Yunlong; Atwood, Brady K.; Wyss-Coray, Tony; Nho, Kwangsik; Bissel, Stephanie J.; Lamb, Bruce T.; Landreth, Gary E.; Medical and Molecular Genetics, School of Medicine
    Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aβ clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University