ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Carpenter, Richard"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors
    (Biomed Central, 2019-06-04) Hagar, Amit; Wang, Zemin; Koyama, Sachiko; Serrano, Josua Aponte; Melo, Luma; Vargas, Stephanie; Carpenter, Richard; Foley, John; Dermatology, School of Medicine
    BACKGROUND: Aerobic exercise has been shown to slow tumor progression in rodents and humans, but the mechanisms behind this effect are still unclear. Here we show that aerobic exercise in the form of chronic endurance training suppresses tumor recruitment of FoxP3+ Treg cells thus enhancing antitumor immune efficiency. METHODS: Adult wild-type and athymic BALB/c female mice were endurance-trained for 8 weeks. Circulating leukocytes as well as muscle and liver mtDNA copy number were compared to aged-matched concurrent sedentary controls to establish systemic effects. 4 T1 murine mammary tumor cells were injected subcutaneously to the 4th mammary pad at the end of the training period. Tumor growth and survival rates were compared, together with antitumor immune response. RESULTS: Exercised wild-type had 17% slower growth rate, 24% longer survival, and 2-fold tumor-CD+ 8/FoxP3+ ratio than sedentary controls. Exercised athymic BALB/c females showed no difference in tumor growth or survival rates when compared to sedentary controls. CONCLUSIONS: Cytotoxic T cells are a significant factor in endurance exercise-induced suppression of tumor growth. Endurance exercise enhances antitumor immune efficacy by increasing intratumoral CD8+/FoxP3+ ratio.
  • Loading...
    Thumbnail Image
    Item
    Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors
    (MDPI, 2024-09-27) Snyder, Christina M.; Mateo, Beatriz; Patel, Khushbu; Fahrenholtz, Cale D.; Rohde, Monica M.; Carpenter, Richard; Singh, Ravi N.; Biochemistry and Molecular Biology, School of Medicine
    Metal nanoparticles have been tested for therapeutic and imaging applications in pre-clinical models of cancer, but fears of toxicity have limited their translation. An emerging concept in nanomedicine is to exploit the inherent drug-like properties of unmodified nanomaterials for cancer therapy. To be useful clinically, there must be a window between the toxicity of the nanomaterial to cancer and toxicity to normal cells. This necessitates identification of specific vulnerabilities in cancers that can be targeted using nanomaterials without inducing off-target toxicity. Previous studies point to proteotoxic stress as a driver of silver nanoparticle (AgNPs) toxicity. Two key cell stress responses involved in mitigating proteotoxicity are the heat shock response (HSR) and the integrated stress response (ISR). Here, we examine the role that these stress responses play in AgNP-induced cytotoxicity in triple-negative breast cancer (TNBC) and immortalized mammary epithelial cells. Furthermore, we investigate HSR and ISR inhibitors as potential drug partners to increase the anti-cancer efficacy of AgNPs without increasing off-target toxicity. We showed that AgNPs did not strongly induce the HSR at a transcriptional level, but instead decreased expression of heat shock proteins (HSPs) at the protein level, possibly due to degradation in AgNP-treated TNBC cells. We further showed that the HSR inhibitor, KRIBB11, synergized with AgNPs in TNBC cells, but also increased off-target toxicity in immortalized mammary epithelial cells. In contrast, we found that salubrinal, a drug that can sustain pro-death ISR signaling, enhanced AgNP-induced cell death in TNBC cells without increasing toxicity in immortalized mammary epithelial cells. Subsequent co-culture studies demonstrated that AgNPs in combination with salubrinal selectively eliminated TNBCs without affecting immortalized mammary epithelial cells grown in the same well. Our findings provide additional support for proteotoxic stress as a mechanism by which AgNPs selectively kill TNBCs and will help guide future efforts to identify drug partners that would be beneficial for use with AgNPs for cancer therapy.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University