- Browse by Author
Browsing by Author "Caron, Bradley"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Denoising diffusion weighted imaging data using convolutional neural networks(Public Library of Science, 2022-09-15) Cheng, Hu; Vinci-Booher, Sophia; Wang, Jian; Caron, Bradley; Wen, Qiuting; Newman, Sharlene; Pestilli, Franco; Radiology and Imaging Sciences, School of MedicineDiffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue microstructure measurements; however, high b-value DWI images contain high noise levels that can overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple denoising method that can be applied to any dataset, provided a low-noise, single-subject dataset is acquired using the same DWI sequence. The denoising method uses a one-dimensional convolutional neural network (1D-CNN) and deep learning to learn from a low-noise dataset, voxel-by-voxel. The trained model can then be applied to high-noise datasets from other subjects. We validated the 1D-CNN denoising method by first demonstrating that 1D-CNN denoising resulted in DWI images that were more similar to the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simulated DWI data. Using the same DWI acquisition but reconstructed with two common reconstruction methods, i.e. SENSE1 and sum-of-square, to generate a pair of low-noise and high-noise datasets, we then demonstrated that 1D-CNN denoising of high-noise DWI data collected from human subjects showed promising results in three domains: DWI images, diffusion metrics, and tractography. In particular, the denoised images were very similar to a low-noise reference image of that subject, more than the similarity between repeated low-noise images (i.e. computational reproducibility). Finally, we demonstrated the use of the 1D-CNN method in two practical examples to reduce noise from parallel imaging and simultaneous multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple, effective denoising method for DWI images that overcomes some of the limitations of current state-of-the-art denoising methods, such as the need for a large number of training subjects and the need to account for the rectified noise floor.Item The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services(Springer Nature, 2019-05-23) Avesani, Paolo; McPherson, Brent; Hayashi, Soichi; Caiafa, Cesar F.; Henschel, Robert; Garyfallidis, Eleftherios; Kitchell, Lindsey; Bullock, Daniel; Patterson, Andrew; Olivetti, Emanuele; Sporns, Olaf; Saykin, Andrew J.; Wang, Lei; Dinov, Ivo; Hancock, David; Caron, Bradley; Qian, Yiming; Pestilli, Franco; Radiology and Imaging Sciences, School of MedicineWe describe the Open Diffusion Data Derivatives (O3D) repository: an integrated collection of preserved brain data derivatives and processing pipelines, published together using a single digital-object-identifier. The data derivatives were generated using modern diffusion-weighted magnetic resonance imaging data (dMRI) with diverse properties of resolution and signal-to-noise ratio. In addition to the data, we publish all processing pipelines (also referred to as open cloud services). The pipelines utilize modern methods for neuroimaging data processing (diffusion-signal modelling, fiber tracking, tractography evaluation, white matter segmentation, and structural connectome construction). The O3D open services can allow cognitive and clinical neuroscientists to run the connectome mapping algorithms on new, user-uploaded, data. Open source code implementing all O3D services is also provided to allow computational and computer scientists to reuse and extend the processing methods. Publishing both data-derivatives and integrated processing pipeline promotes practices for scientific reproducibility and data upcycling by providing open access to the research assets for utilization by multiple scientific communities.