- Browse by Author
Browsing by Author "Capitano, Maegan"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Abstract 16: Insights into Highly Engraftable Hematopoietic Cells from 27-Year Cryopreserved Umbilical Cord Blood(Oxford University Press, 2023-09-04) Broxmeyer, Hal; Luchsinger, Larry; Weinberg, Rona; Jimenez, Alexandra; Masson Frenet, Emeline; van't Hof, Wouter; Capitano, Maegan; Hillyer, Christopher; Kaplan, Mark; Cooper, Scott; Ropa, James; Microbiology and Immunology, School of MedicineIntroduction: Cord blood banking has consistently outpaced the utilization of cord blood units (CBUs). Thus, the average duration of cryopreservation among banked CBUs will likely continue to increase. It remains unclear how long cryopreserved CBUs remain functional, and it is critical to determine whether duration of cryopreservation should be used as an exclusionary criterion during selection for clinical use or if alternative post-thaw metrics can identify potent cryopreserved CBUs regardless of age. Objectives: Our goal was to determine whether long-term (27-year) cryopreserved CBUs retain viable and functional hematopoietic stem (HSCs) and progenitor cells (HPCs). We further sought to leverage differences in HSC/HPC function (measured by in vivo engraftment) to demonstrate the utility of using omics approaches to identify candidate genes for use as molecular potency markers. Methods: We performed comprehensive ex vivo, in vivo, and molecular analyses on the numbers, viability, and function of three 27-year cryopreserved CBUs using 3-year cryopreserved and fresh CBUs for comparison. Assays included viability staining, immunophenotyping by flow cytometry, primary and secondary colony forming unit (CFU) assays, ex vivo expansion of immunophenotypic HSCs/HPCs/CFUs, limiting dilution transplantations into immune-deficient mice, secondary transplantations, and RNA-sequencing of sorted HSCs and multipotent progenitor cells. Results: Compared to fresh and recently cryopreserved CBU controls, long-term cryopreserved CBUs yield statistically similar numbers of viable immunophenotypic HSCs, multipotent HPCs, and committed myeloid and lymphoid HPCs. They retain highly functional cells, demonstrating similar primary and secondary CFU numbers and expansion capacity compared to controls, as well as robust engraftment, SCID repopulating cell frequency, and secondary engraftment capacity in mouse models of transplantation. Transcriptomic modelling revealed 18 genes, including MALT1 and MAP2K1, and several gene programs, including lineage determination programs and oxidative stress responses, that are strongly enriched in high engrafting HSCs/HPCs. Discussion: CBUs cryopreserved for up to 27 years retain highly functional HSCs/HPCs. Thus, duration of cryopreservation alone is not an ideal exclusionary criteria for selection of CBUs. Preserving older CBUs may help to maintain a large and diverse pool of donors for clinical selection. Further, transcriptomics can identify candidate genes associated with engraftment for elucidation of possible CBU potency markers regardless of the duration of cryopreservation.Item Age-related decline in LEPR+ hematopoietic stem cell function(Springer Nature, 2023) Trinh, Thao; Ropa, James; Cooper, Scott; Aljoufi, Arafat; Sinn, Anthony; Capitano, Maegan; Broxmeyer, Hal E.; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineItem BATF sustains homeostasis and functionality of bone marrow Treg cells to preserve homeostatic regulation of hematopoiesis and development of B cells(Frontiers Media, 2023-02-22) Tikka, Chiranjeevi; Beasley, Lindsay; Xu, Chengxian; Yang, Jing; Cooper, Scott; Lechner, Joseph; Gutch, Sarah; Kaplan, Mark H.; Capitano, Maegan; Yang, Kai; Pediatrics, School of MedicineBone marrow Treg cells (BM Tregs) orchestrate stem cell niches crucial for hematopoiesis. Yet little is known about the molecular mechanisms governing BM Treg homeostasis and function. Here we report that the transcription factor BATF maintains homeostasis and functionality of BM Tregs to facilitate homeostatic regulation of hematopoiesis and B cell development. Treg-specific ablation of BATF profoundly compromised proportions of BM Tregs associated with reduced expression of Treg effector molecules, including CD44, ICOS, KLRG1, and TIGIT. Moreover, BATF deficiency in Tregs led to increased numbers of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and granulocyte-macrophage progenitors (GMPs), while reducing the functionality of myeloid progenitors and the generation of common lymphoid progenitors. Furthermore, Tregs lacking BATF failed to support the development of B cells in the BM. Mechanistically, BATF mediated IL-7 signaling to promote expression of effector molecules on BM Tregs and their homeostasis. Our studies reveal a previously unappreciated role for BATF in sustaining BM Treg homeostasis and function to ensure hematopoiesis.Item Chromatin Remodeling Subunit BRM and Valine Regulate Hematopoietic Stem/Progenitor Cell Function and Self-Renewal Via Intrinsic and Extrinsic Effects(Springer Nature, 2022) Naidu, Samisubbu R.; Capitano, Maegan; Ropa, James; Cooper, Scott; Huang, Xinxin; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineLittle is known of hematopoietic stem (HSC) and progenitor (HPC) cell self-renewal. The role of Brahma (BRM), a chromatin remodeler, in HSC function is unknown. Bone marrow (BM) from Brm-/- mice manifested increased numbers of long- and short-term HSCs, GMPs, and increased numbers and cycling of functional HPCs. However, increased Brm-/- BM HSC numbers had decreased secondary and tertiary engraftment, suggesting BRM enhances HSC self-renewal. Valine was elevated in lineage negative Brm-/- BM cells, linking intracellular valine with Brm expression. Valine enhanced HPC colony formation, replating of human cord blood (CB) HPC-derived colonies, mouse BM and human CB HPC survival in vitro, and ex vivo expansion of normal mouse BM HSCs and HPCs. Valine increased oxygen consumption rates of WT cells. BRM through CD98 was linked to regulated import of branched chain amino acids, such as valine, in HPCs. Brm-/- LSK cells exhibited upregulated interferon response/cell cycle gene programs. Effects of BRM depletion are less apparent on isolated HSCs compared to HSCs in the presence of HPCs, suggesting cell extrinsic effects on HSCs. Thus, intracellular valine is regulated by BRM expression in HPCs, and the BRM/valine axis regulates HSC and HPC self-renewal, proliferation, and possibly differentiation fate decisions.Item DPP4 Truncated GM-CSF & IL-3 Manifest Distinct Receptor Binding & Regulatory Functions Compared to their Full Length Forms(Nature Publishing group, 2017-11) O’Leary, Heather Ann; Capitano, Maegan; Cooper, Scott; Mantel, Charlie; Boswell, H. Scott; Kapur, Reuben; Ramdas, Baskar; Chan, Rebecca; Deng, Lisa; Qu, Cheng-Kui; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineDipeptidylpeptidase 4 (DPP4/CD26) enzymatically cleaves select penultimate amino acids of proteins, including colony stimulating factors (CSFs), and has been implicated in cellular regulation. To better understand the role of DPP4 regulation of hematopoiesis, we analyzed the activity of DPP4 on the surface of immature blood cells and then comparatively assessed the interactions and functional effects of full-length (FL) and DPP4 truncated factors [(T)-GM-CSF and- IL-3] on both in vitro and in vivo models of normal and leukemic cells. T-GM-CSF and T-IL-3 had enhanced receptor binding, but decreased CSF activity, compared to their FL forms. Importantly, T-GM-CSF and T-IL-3 significantly, and reciprocally, blunted receptor binding and myeloid progenitor cell proliferation activity of both FL-GM-CSF and FL-IL-3 in vitro and in vivo. Similar effects were apparent in vitro using cluster forming cells from patients with Acute Myeloid Leukemia (AML) regardless of cytogenetic or molecular alterations and in vivo utilizing animal models of leukemia. This suggests that DPP4 T-molecules have modified binding and functions compared to their FL counterparts and may serve regulatory roles in normal and malignant hematopoiesis.Item Modulation of Hematopoietic Chemokine Effects In Vitro and In Vivo by DPP-4/CD26(Mary Ann Liebert, 2016-04-15) Broxmeyer, Hal E.; Capitano, Maegan; Campbell, Timothy B.; Hangoc, Giao; Cooper, Scott; Department of Microbiology and Immunology, School of MedicineDipeptidyl peptidase 4 (DPP4)/CD26 truncates certain proteins, and this posttranslational modification can influence their activity. Truncated (T) colony-stimulating factors (CSFs) are decreased in potency for stimulating proliferation of hematopoietic progenitor cells (HPCs). T-CXCL12, a modified chemokine, is inactive as an HPC chemotactic, survival, and enhancing factor for replating or ex-vivo expansion of HPCs. Moreover, T-CSFs and T-CXCL12 specifically downmodulates the positively acting effects of their own full-length molecule. Other chemokines have DPP4 truncation sites. In the present study, we evaluated effects of DPP4 inhibition (by Diprotin A) or gene deletion of HPC on chemokine inhibition of multicytokine-stimulated HPC, and on chemokine-enhancing effects on single CSF-stimulated HPC proliferation, as well as effects of DPP4 treatment of a number of chemokines. Myelosuppressive effects of chemokines with, but not without, a DPP4 truncation site were greatly enhanced in inhibitory potency by pretreating target bone marrow (BM) cells with Diprotin A, or by assaying their activity on dpp4/cd26(-/-) BM cells. DPP4 treatment of myelosuppressive chemokines containing a DPP4 truncation site produced a nonmyelosuppressive molecule, but one which had the capacity to block suppression by that unmodified chemokine both in vitro and in vivo. Additionally, DPP4 treatment ablated the single cytokine-stimulated HPC-enhancing activity of CCL3/MIP-1α and CCL4/MIP-1β, and blocked the enhancing activity of each unmodified molecule, in vitro and in vivo. These results highlight the functional posttranslational modulating effects of DPP4 on chemokine activities, and information offering additional biological insight into chemokine regulation of hematopoiesis.Item Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation(F1000 Research Ltd, 2019-10-31) Huang, Xinxin; Guo, Bin; Capitano, Maegan; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineCord blood (CB) has been used as a viable source of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in over 35,000 clinical hematopoietic cell transplantation (HCT) efforts to treat the same variety of malignant and non-malignant disorders treated by bone marrow (BM) and mobilized peripheral blood (mPB) using HLA-matched or partially HLA-disparate related or unrelated donor cells for adult and children recipients. This review documents the beginning of this clinical effort that started in the 1980's, the pros and cons of CB HCT compared to BM and mPB HCT, and recent experimental and clinical efforts to enhance the efficacy of CB HCT. These efforts include means for increasing HSC numbers in single CB collections, expanding functional HSCs ex vivo, and improving CB HSC homing and engraftment, all with the goal of clinical translation. Concluding remarks highlight the need for phase I/II clinical trials to test the experimental procedures that are described, either alone or in combination.Item Pharmacological activation of nitric oxide signaling promotes human hematopoietic stem cell homing and engraftment(Springer Nature, 2021-01) Xu, Danhua; Yang, Min; Capitano, Maegan; Guo, Bin; Liu, Sheng; Wan, Jun; Broxmeyer, Hal E.; Huang, Xinxin; Microbiology and Immunology, School of MedicineItem Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-β1 secretion and hematopoiesis in mic(American Society of Hematology, 2018-09-06) Capitano, Maegan; Zhao, Liang; Cooper, Scott; Thorsheim, Chelsea; Suzuki, Aae; Huang, Xinxin; Dent, Alexander L.; Marks, Michael S.; Abrams, Charles S.; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineWe hypothesized that megakaryocyte (MK) phosphoinositide signaling mediated by phosphatidylinositol transfer proteins (PITPs) contributes to hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) regulation. Conditional knockout mice lacking PITPs specifically in MKs and platelets (pitpα-/- and pitpα-/-/β-/-) bone marrow (BM) manifested decreased numbers of HSCs, MK-erythrocyte progenitors, and cycling HPCs. Further, pitpα-/-/β-/- BM had significantly reduced engrafting capability in competitive transplantation and limiting dilution analysis. Conditioned media (CM) from cultured pitpα-/- and pitpα-/-/β-/- BM MKs contained higher levels of transforming growth factor β1 (TGF-β1) and interleukin-4 (IL-4), among other myelosuppressive cytokines, than wild-type BM MKs. Correspondingly, BM flush fluid from pitpα-/- and pitpα-/-/β-/- mice had higher concentrations of TGF-β1. CM from pitpα-/- and pitpα-/-/β-/- MKs significantly suppressed HPC colony formation, which was completely extinguished in vitro by neutralizing anti-TGF-β antibody, and treatment of pitpα-/-/β-/- mice in vivo with anti-TGF-β antibodies completely reverted their defects in BM HSC and HPC numbers. TGF-β and IL-4 synergized to inhibit HPC colony formation in vitro. Electron microscopy analysis of pitpα-/-/β-/- MKs revealed ultrastructural defects with depleted α-granules and large, misshaped multivesicular bodies. Von Willebrand factor and thrombospondin-1, like TGF-β, are stored in MK α-granules and were also elevated in CM of cultured pitpα-/-/β-/- MKs. Altogether, these data show that ablating PITPs in MKs indirectly dysregulates hematopoiesis in the BM by disrupting α-granule physiology and secretion of TGF-β1.