ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Calder, Alyssa N."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy
    (ACS Publications, 2017-06-08) Rietz, Anne; Li, Hongxia; Quist, Kevin M.; Cherry, Jonathan J.; Lorson, Christian L.; Burnett, Barrington; Kern, Nicholas L.; Calder, Alyssa N.; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J.; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A.; Cuny, Gregory D.; Androphy, Elliot J.; Hodgetts, Kevin J.; Dermatology, School of Medicine
    Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.
  • Loading...
    Thumbnail Image
    Item
    Optimization of a series of heterocycles as survival motor neuron gene transcription enhancers
    (Elsevier, 2017-12) Choi, Sungwoon; Calder, Alyssa N.; Miller, Eliza H.; Anderson, Kierstyn P.; Fiejtek, Dawid K.; Rietz, Anne; Li, Hongxia; Cherry, Jonathan J.; Quist, Kevin M.; Xing, Xuechao; Glicksman, Marcie A.; Cuny, Gregory D.; Lorson, Christian L.; Androphy, Elliot A.; Hodgetts, Kevin J.; Dermatology, School of Medicine
    Spinal muscular atrophy (SMA) is a neurodegenerative disorder that results from mutations in the SMN1 gene, leading to survival motor neuron (SMN) protein deficiency. One therapeutic strategy for SMA is to identify compounds that enhance the expression of the SMN2 gene, which normally only is a minor contributor to functional SMN protein production, but which is unaffected in SMA. A recent high-throughput screening campaign identified a 3,4-dihydro-4-phenyl-2(1H)-quinolinone derivative (2) that increases the expression of SMN2 by 2-fold with an EC50 = 8.3 µM. A structure-activity relationship (SAR) study revealed that the array of tolerated substituents, on either the benzo portion of the quinolinone or the 4-phenyl, was very narrow. However, the lactam ring of the quinolinone was more amenable to modifications. For example, the quinazolinone (9a) and the benzoxazepin-2(3H)-one (19) demonstrated improved potency and efficacy for increase in SMN2 expression as compared to 2.
  • Loading...
    Thumbnail Image
    Item
    Small Molecules in Development for the Treatment of Spinal Muscular Atrophy
    (ACS, 2016-08) Calder, Alyssa N.; Androphy, Elliot J.; Hodgetts, Kevin J.; Department of Dermatology, School of Medicine
    Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease resulting from pathologically low levels of survival motor neuron (SMN) protein. The majority of mRNA from the SMN2 allele undergoes alternative splicing and excludes critical codons, causing an SMN protein deficiency. While there is currently no FDA-approved treatment for SMA, early therapeutic efforts have focused on testing repurposed drugs such as phenylbutyrate (2), valproic acid (3), riluzole (6), hydroxyurea (7), and albuterol (9), none of which has demonstrated clinical effectiveness. More recently, clinical trials have focused on novel small-molecule compounds identified from high-throughput screening and medicinal chemistry optimization such as olesoxime (11), CK-2127107, RG7800, LMI070, and RG3039 (17). In this paper, we review both repurposed drugs and small-molecule compounds discovered following medicinal chemistry optimization for the potential treatment of SMA.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University