ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Calabrese, Evan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice
    (Elsevier, 2024) Bakas, Spyridon; Vollmuth, Philipp; Galldiks, Norbert; Booth, Thomas C.; Aerts, Hugo J. W. L.; Bi, Wenya Linda; Wiestler, Benedikt; Tiwari, Pallavi; Pati, Sarthak; Baid, Ujjwal; Calabrese, Evan; Lohmann, Philipp; Nowosielski, Martha; Jain, Rajan; Colen, Rivka; Ismail, Marwa; Rasool, Ghulam; Lupo, Janine M.; Akbari, Hamed; Tonn, Joerg C.; Macdonald, David; Vogelbaum, Michael; Chang, Susan M.; Davatzikos, Christos; Villanueva-Meyer, Javier E.; Huang, Raymond Y.; Response Assessment in Neuro Oncology (RANO) group; Pathology and Laboratory Medicine, School of Medicine
    Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
  • Loading...
    Thumbnail Image
    Item
    The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
    (ArXiv, 2023-06-01) Moawad, Ahmed W.; Janas, Anastasia; Baid, Ujjwal; Ramakrishnan, Divya; Jekel, Leon; Krantchev, Kiril; Moy, Harrison; Saluja, Rachit; Osenberg, Klara; Wilms, Klara; Kaur, Manpreet; Avesta, Arman; Cassinelli Pedersen, Gabriel; Maleki, Nazanin; Salimi, Mahdi; Merkaj, Sarah; von Reppert, Marc; Tillmans, Niklas; Lost, Jan; Bousabarah, Khaled; Holler, Wolfgang; Lin, MingDe; Westerhoff, Malte; Maresca, Ryan; Link, Katherine E.; Tahon, Nourel Hoda; Marcus, Daniel; Sotiras, Aristeidis; LaMontagne, Pamela; Chakrabarty, Strajit; Teytelboym, Oleg; Youssef, Ayda; Nada, Ayaman; Velichko, Yuri S.; Gennaro, Nicolo; Connectome Students; Group of Annotators; Cramer, Justin; Johnson, Derek R.; Kwan, Benjamin Y. M.; Petrovic, Boyan; Patro, Satya N.; Wu, Lei; So, Tiffany; Thompson, Gerry; Kam, Anthony; Guzman Perez-Carrillo, Gloria; Lall, Neil; Group of Approvers; Albrecht, Jake; Anazodo, Udunna; Lingaru, Marius George; Menze, Bjoern H.; Wiestler, Benedikt; Adewole, Maruf; Anwar, Syed Muhammad; Labella, Dominic; Li, Hongwei Bran; Iglesias, Juan Eugenio; Farahani, Keyvan; Eddy, James; Bergquist, Timothy; Chung, Verena; Shinohara, Russel Takeshi; Dako, Farouk; Wiggins, Walter; Reitman, Zachary; Wang, Chunhao; Liu, Xinyang; Jiang, Zhifan; Van Leemput, Koen; Piraud, Marie; Ezhov, Ivan; Johanson, Elaine; Meier, Zeke; Familiar, Ariana; Kazerooni, Anahita Fathi; Kofler, Florian; Calabrese, Evan; Aneja, Sanjay; Chiang, Veronica; Ikuta, Ichiro; Shafique, Umber; Memon, Fatima; Conte, Gian Marco; Bakas, Spyridon; Rudie, Jeffrey; Aboian, Mariam; Radiology and Imaging Sciences, School of Medicine
    Clinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University