- Browse by Author
Browsing by Author "Cai, Jun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Compact Blast-Induced Traumatic Brain Injury Model in Mice(Oxford University Press, 2016-02) Wang, Hongxing; Zhang, Yi Ping; Cai, Jun; Shields, Lisa B. E.; Tuchek, Chad A.; Shi, Riyi; Li, Jianan; Shields, Christopher B.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineBlast-induced traumatic brain injury (bTBI) is a common injury on the battlefield and often results in permanent cognitive and neurological abnormalities. We report a novel compact device that creates graded bTBI in mice. The injury severity can be controlled by precise pressures that mimic Friedlander shockwave curves. The mouse head was stabilized with a head fixator, and the body was protected with a metal shield; shockwave durations were 3 to 4 milliseconds. Reflective shockwave peak readings at the position of the mouse head were 12 6 2.6 psi, 50 6 20.3 psi, and 100 6 33.1 psi at 100, 200, and 250 psi predetermined driver chamber pressures, respectively. The bTBIs of 250 psi caused 80% mortality, which decreased to 27% with the metal shield. Brain and lung damage depended on the shockwave duration and amplitude. Cognitive deficits were assessed using the Morris water maze, Y-maze, and open-field tests. Pathological changes in the brain included disruption of the blood-brain barrier, multifocal neuronal and axonal degeneration, and reactive gliosis assessed by Evans Blue dye extravasation, silver and Fluoro-Jade B staining, and glial fibrillary acidic protein immunohistochemistry, respectively. Behavioral and pathological changes were injury severity-dependent. This mouse bTBI model may be useful for investigating injury mechanisms and therapeutic strategies associated with bTBI.Item Pathophysiological and behavioral deficits in developing mice following rotational acceleration-deceleration traumatic brain injury(Company of Biologists:, 2018-01-30) Wang, Guoxiang; Zhang, Yi Ping; Gao, Zhongwen; Shields, Lisa B. E.; Li, Fang; Chu, Tianci; Lv, Huayi; Moriarty, Thomas; Xu, Xiao-Ming; Yang, Xiaoyu; Shields, Christopher B.; Cai, Jun; Neurological Surgery, School of MedicineAbusive head trauma (AHT) is the leading cause of death from trauma in infants and young children. An AHT animal model was developed on 12-day-old mice subjected to 90° head extension-flexion sagittal shaking repeated 30, 60, 80 and 100 times. The mortality and time until return of consciousness were dependent on the number of repeats and severity of the injury. Following 60 episodes of repeated head shakings, the pups demonstrated apnea and/or bradycardia immediately after injury. Acute oxygen desaturation was observed by pulse oximetry during respiratory and cardiac suppression. The cerebral blood perfusion was assessed by laser speckle contrast analysis (LASCA) using a PeriCam PSI system. There was a severe reduction in cerebral blood perfusion immediately after the trauma that did not significantly improve within 24 h. The injured mice began to experience reversible sensorimotor function at 9 days postinjury (dpi), which had completely recovered at 28 dpi. However, cognitive deficits and anxiety-like behavior remained. Subdural/subarachnoid hemorrhage, damage to the brain-blood barrier and parenchymal edema were found in all pups subjected to 60 insults. Proinflammatory response and reactive gliosis were upregulated at 3 dpi. Degenerated neurons were found in the cerebral cortex and olfactory tubercles at 30 dpi. This mouse model of repetitive brain injury by rotational head acceleration-deceleration partially mimics the major pathophysiological and behavioral events that occur in children with AHT. The resultant hypoxia/ischemia suggests a potential mechanism underlying the secondary rotational acceleration-deceleration-induced brain injury in developing mice.