- Browse by Author
Browsing by Author "Cai, Chenleng"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Author Correction: REST regulates the cell cycle for cardiac development and regeneration(Springer Nature, 2018-01-12) Zhang, Donghong; Wang, Yidong; Lu, Pengfei; Wang, Ping; Yuan, Xinchun; Yan, Jianyun; Cai, Chenleng; Chang, Ching-Pin; Zheng, Deyou; Wu, Bingruo; Zhou, Bin; Medicine, School of MedicineDespite the importance of cardiomyocyte proliferation in cardiac development and regeneration, the mechanisms that promote cardiomyocyte cell cycle remain incompletely understood. RE1 silencing transcription factor (REST) is a transcriptional repressor of neuronal genes. Here we show that REST also regulates the cardiomyocyte cell cycle. REST binds and represses the cell cycle inhibitor gene p21 and is required for mouse cardiac development and regeneration. Rest deletion de-represses p21 and inhibits the cardiomyocyte cell cycle and proliferation in embryonic or regenerating hearts. By contrast, REST overexpression in cultured cardiomyocytes represses p21 and increases proliferation. We further show that p21 knockout rescues cardiomyocyte cell cycle and proliferation defects resulting from Rest deletion. Our study reveals a REST-p21 regulatory axis as a mechanism for cell cycle progression in cardiomyocytes, which might be exploited therapeutically to enhance cardiac regeneration.Item MiR-150 attenuates maladaptive cardiac remodeling mediated by long noncoding RNA MIAT and directly represses pro-fibrotic Hoxa4(American Heart Association, 2022) Aonuma, Tatsuya; Moukette, Bruno; Kawaguchi, Satoshi; Barupala, Nipuni P.; Sepúlveda, Marisa N.; Frick, Kyle; Tang, Yaoliang; Guglin, Maya; Raman, Subha V.; Cai, Chenleng; Liangpunsakul, Suthat; Nakagawa, Shinichi; Kim, Il-man; Anatomy, Cell Biology and Physiology, School of MedicineBackground: MicroRNA-150 (miR-150) plays a protective role in heart failure (HF). Long noncoding RNA, myocardial infarction-associated transcript (MIAT) regulates miR-150 function in vitro by direct interaction. Concurrent with miR-150 downregulation, MIAT is upregulated in failing hearts, and gain-of-function single-nucleotide polymorphisms in MIAT are associated with increased risk of myocardial infarction (MI) in humans. Despite the correlative relationship between MIAT and miR-150 in HF, their in vivo functional relationship has never been established, and molecular mechanisms by which these 2 noncoding RNAs regulate cardiac protection remain elusive. Methods: We use MIAT KO (knockout), Hoxa4 (homeobox a4) KO, MIAT TG (transgenic), and miR-150 TG mice. We also develop DTG (double TG) mice overexpressing MIAT and miR-150. We then use a mouse model of MI followed by cardiac functional, structural, and mechanistic studies by echocardiography, immunohistochemistry, transcriptome profiling, Western blotting, and quantitative real-time reverse transcription-polymerase chain reaction. Moreover, we perform expression analyses in hearts from patients with HF. Lastly, we investigate cardiac fibroblast activation using primary adult human cardiac fibroblasts and in vitro assays to define the conserved MIAT/miR-150/HOXA4 axis. Results: Using novel mouse models, we demonstrate that genetic overexpression of MIAT worsens cardiac remodeling, while genetic deletion of MIAT protects hearts against MI. Importantly, miR-150 overexpression attenuates the detrimental post-MI effects caused by MIAT. Genome-wide transcriptomic analysis of MIAT null mouse hearts identifies Hoxa4 as a novel downstream target of the MIAT/miR-150 axis. Hoxa4 is upregulated in cardiac fibroblasts isolated from ischemic myocardium and subjected to hypoxia/reoxygenation. HOXA4 is also upregulated in patients with HF. Moreover, Hoxa4 deficiency in mice protects the heart from MI. Lastly, protective actions of cardiac fibroblast miR-150 are partially attributed to the direct and functional repression of profibrotic Hoxa4. Conclusions: Our findings delineate a pivotal functional interaction among MIAT, miR-150, and Hoxa4 as a novel regulatory mechanism pertinent to ischemic HF.Item REST regulates the cell cycle for cardiac development and regeneration(Nature Publishing group, 2017-12-07) Zhang, Donghong; Wang, Yidong; Lu, Pengfei; Wang, Ping; Yuan, Xinchun; Yan, Jianyun; Cai, Chenleng; Chang, Ching-Pin; Zheng, Deyou; Wu, Bingruo; Zhou, Bin; Medicine, School of MedicineDespite the importance of cardiomyocyte proliferation in cardiac development and regeneration, the mechanisms that promote cardiomyocyte cell cycle remain incompletely understood. RE1 silencing transcription factor (REST) is a transcriptional repressor of neuronal genes. Here we show that REST also regulates the cardiomyocyte cell cycle. REST binds and represses the cell cycle inhibitor gene p21 and is required for mouse cardiac development and regeneration. Rest deletion de-represses p21 and inhibits the cardiomyocyte cell cycle and proliferation in embryonic or regenerating hearts. By contrast, REST overexpression in cultured cardiomyocytes represses p21 and increases proliferation. We further show that p21 knockout rescues cardiomyocyte cell cycle and proliferation defects resulting from Rest deletion. Our study reveals a REST-p21 regulatory axis as a mechanism for cell cycle progression in cardiomyocytes, which might be exploited therapeutically to enhance cardiac regeneration., The mechanisms regulating cardiomyocyte proliferation during development and cardiac regeneration are incompletely understood. The authors show that the transcription factor REST regulates cardiomyocyte proliferation by binding and repressing the cell cycle inhibitor p21.Item Retraction Note: REST regulates the cell cycle for cardiac development and regeneration(Springer Nature, 2024-02-22) Zhang, Donghong; Wang, Yidong; Lu, Pengfei; Wang, Ping; Yuan, Xinchun; Yan, Jianyun; Cai, Chenleng; Chang, Ching-Pin; Zheng, Deyou; Wu, Bingruo; Zhou, Bin; Medicine, School of MedicineRetraction to: Nature Communications 10.1038/s41467-017-02210-y, published online 07 December 2017 The authors have retracted this article because of significant concerns regarding a number of figures presented in this work that question the integrity of the data. After publication, several concerns were raised about the figures in this article. Specifically, * There appears to be a partial overlap between two panels of Figure 4e (bottom left corner for p21KO and top right for DKO). * There appears to be an overlap between a control panel from figure 2k and Rest imKO in Figure 5g (PH3 staining). * There appears to be image reuse between two samples in Figure 5g in the Aurora B staining row for Rest imKO and p21KO. * There appears to be an overlap between Figure 6f Ph3 staining for the Rest cDNA sample and Supplementary Fig. 6e, EdU staining, Rest cDNA, with fewer arrows and less visible DAPI staining. All authors agree with this retraction.