- Browse by Author
Browsing by Author "Butterfield, John S. S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item IL-15 blockade and rapamycin rescue multifactorial loss of factor VIII from AAV-transduced hepatocytes in hemophilia A mice(Elsevier, 2022-12-07) Butterfield, John S. S.; Yamada, Kentaro; Bertolini, Thais B.; Syed, Farooq; Kumar, Sandeep R. P.; Li, Xin; Arisa, Sreevani; Piñeros, Annie R.; Tapia, Alejandro; Rogers, Christopher A.; Li, Ning; Rana, Jyoti; Biswas, Moanaro; Terhorst, Cox; Kaufman, Randal J.; de Jong, Ype P.; Herzog, Roland W.; Pediatrics, School of MedicineHepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.Item A Molecular Revolution in the Treatment of Hemophilia(Elsevier, 2019) Butterfield, John S. S.; Hege, Kerry M.; Herzog, Roland W.; Kaczmarek, Radoslaw; Pediatrics, School of MedicineFor decades, the monogenetic bleeding disorders hemophilia A and B (coagulation factor VIII and IX deficiency) have been treated with systemic protein replacement therapy. Now, diverse molecular medicines, ranging from antibody to gene to RNA therapy, are transforming treatment. Traditional replacement therapy requires twice to thrice weekly intravenous infusions of factor. While extended half-life products may reduce the frequency of injections, patients continue to face a lifelong burden of the therapy, suboptimal protection from bleeding and joint damage, and potential development of neutralizing anti-drug antibodies (inhibitors) that require less efficacious bypassing agents and further reduce quality of life. Novel non-replacement and gene therapies aim to address these remaining issues. A recently approved factor VIII-mimetic antibody accomplishes hemostatic correction in patients both with and without inhibitors. Antibodies against tissue factor pathway inhibitor (TFPI) and antithrombin-specific small interfering RNA (siRNA) target natural anticoagulant pathways to rebalance hemostasis. Adeno-associated virus (AAV) gene therapy provides lasting clotting factor replacement and can also be used to induce immune tolerance. Multiple gene-editing techniques are under clinical or preclinical investigation. Here, we provide a comprehensive overview of these approaches, explain how they differ from standard therapies, and predict how the hemophilia treatment landscape will be reshaped.Item Potential Role for Oral Tolerance in Gene Therapy(Elsevier, 2023) Butterfield, John S. S.; Li, Xin; Arisa, Sreevani; Kwon, Kwang-Chul; Daniell, Henry; Herzog, Roland W.; Pediatrics, School of MedicineOral immunotherapies are being developed for various autoimmune diseases and allergies to suppress immune responses in an antigen-specific manner. Previous studies have shown that anti-drug antibody (inhibitor) formation in protein replacement therapy for the inherited bleeding disorder hemophilia can be prevented by repeated oral delivery of coagulation factor antigens bioencapsulated in transplastomic lettuce cells. Here, we find that this approach substantially reduces antibody development against factor VIII in hemophilia A mice treated with adeno-associated viral gene transfer. We propose that the concept of oral tolerance can be applied to prevent immune responses against therapeutic transgene products expressed in gene therapy.