ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Burke, Michael J."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Levocarnitine for pegaspargase-induced hepatotoxicity in older children and young adults with acute lymphoblastic leukemia
    (Wiley, 2021-11) Schulte, Rachael; Hinson, Ashley; Huynh, Van; Breese, Erin H.; Pierro, Joanna; Rotz, Seth; Mixon, Benjamin A.; McNeer, Jennifer L.; Burke, Michael J.; Orgel, Etan; Pediatrics, School of Medicine
    Background: Pegaspargase (PEG-ASP) is an integral component of therapy for acute lymphoblastic leukemia (ALL) but is associated with hepatotoxicity that may delay or limit future therapy. Obese and adolescent and young adult (AYA) patients are at high risk. Levocarnitine has been described as potentially beneficial for the treatment or prevention of PEG-ASP-associated hepatotoxicity. Methods: We collected data for patients age ≥10 years who received levocarnitine during induction therapy for ALL, compared to a similar patient cohort who did not receive levocarnitine. The primary endpoint was conjugated bilirubin (c.bili) >3 mg/dl. Secondary endpoints were transaminases >10× the upper limit of normal and any Grade ≥3 hepatotoxicity. Results: Fifty-two patients received levocarnitine for prophylaxis (n = 29) or rescue (n = 32) of hepatotoxicity. Compared to 109 patients without levocarnitine, more patients receiving levocarnitine were obese and/or older and had significantly higher values for some hepatotoxicity markers at diagnosis and after PEG-ASP. Levocarnitine regimens varied widely; no adverse effects of levocarnitine were identified. Obesity and AYA status were associated with an increased risk of conjugated hyperbilirubinemia and severe transaminitis. Multivariable analysis identified a protective effect of levocarnitine on the development of c.bili >3 mg/dl (OR 0.12, p = 0.029). There was no difference between groups in CTCAE Grade ≥3 hepatotoxicity. C.bili >3 mg/dl during induction was associated with lower event-free survival. Conclusions: This real-world data on levocarnitine supplementation during ALL induction highlights the risk of PEG-ASP-associated hepatotoxicity in obese and AYA patients, and hepatotoxicity's potential impact on survival. Levocarnitine supplementation may be protective, but prospective studies are needed to confirm these findings.
  • Loading...
    Thumbnail Image
    Item
    Potential clinical use of azacitidine and MEK inhibitor combination therapy in PTPN11-mutated juvenile myelomonocytic leukemia
    (Elsevier, 2023) Pasupuleti, Santhosh Kumar; Chao, Karen; Ramdas, Baskar; Kanumuri, Rahul; Palam, Lakshmi Reddy; Liu, Sheng; Wan, Jun; Annesley, Colleen; Loh, Mignon L.; Stieglitz, Elliot; Burke, Michael J.; Kapur, Reuben; Pediatrics, School of Medicine
    Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University