- Browse by Author
Browsing by Author "Bum-Erdene, Khuchtumur"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome(Oxford University Press, 2009-11-18) Li, Liwei; Bum-Erdene, Khuchtumur; Baenziger, Peter H.; Rosen, Joshua J.; Hemmert, Jamison R.; Nellis, Joy A.; Pierce, Marlon E.; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineBioDrugScreen is a resource for ranking molecules docked against a large number of targets in the human proteome. Nearly 1600 molecules from the freely available NCI diversity set were docked onto 1926 cavities identified on 1589 human targets resulting in >3 million receptor–ligand complexes requiring >200 000 cpu-hours on the TeraGrid. The targets in BioDrugScreen originated from Human Cancer Protein Interaction Network, which we have updated, as well as the Human Druggable Proteome, which we have created for the purpose of this effort. This makes the BioDrugScreen resource highly valuable in drug discovery. The receptor–ligand complexes within the database can be ranked using standard and well-established scoring functions like AutoDock, DockScore, ChemScore, X-Score, GoldScore, DFIRE and PMF. In addition, we have scored the complexes with more intensive GBSA and PBSA approaches requiring an additional 120 000 cpu-hours on the TeraGrid. We constructed a simple interface to enable users to view top-ranking molecules and access purchasing and other information for further experimental exploration.Item Chemical Space Overlap with Critical Protein–Protein Interface Residues in Commercial and Specialized Small-Molecule Libraries(Wiley, 2018-12-20) Si, Yubing; Xu, David; Bum-Erdene, Khuchtumur; Ghozayel, Mona K.; Yang, Baocheng; Clemons, Paul A.; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineThere is growing interest in the use of structure-based virtual screening to identify small molecules that inhibit challenging protein–protein interactions (PPIs). In this study, we investigated how effectively chemical library members docked at the PPI interface mimic the position of critical side-chain residues known as “hot spots”. Three compound collections were considered, a commercially available screening collection (ChemDiv), a collection of diversity-oriented synthesis (DOS) compounds that contains natural-product-like small molecules, and a library constructed using established reactions (the “screenable chemical universe based on intuitive data organization”, SCUBIDOO). Three different tight PPIs for which hot-spot residues have been identified were selected for analysis: uPAR·uPA, TEAD4·Yap1, and CaVα·CaVβ. Analysis of library physicochemical properties was followed by docking to the PPI receptors. A pharmacophore method was used to measure overlap between small-molecule substituents and hot-spot side chains. Fragment-like conformationally restricted small molecules showed better hot-spot overlap for interfaces with well-defined pockets such as uPAR·uPA, whereas better overlap was observed for more complex DOS compounds in interfaces lacking a well-defined binding site such as TEAD4·Yap1. Virtual screening of conformationally restricted compounds targeting uPAR·uPA and TEAD4·Yap1 followed by experimental validation reinforce these findings, as the best hits were fragment-like and had few rotatable bonds for the former, while no hits were identified for the latter. Overall, such studies provide a framework for understanding PPIs in the context of additional chemical matter and new PPI definitions.Item Chloroacetamide fragment library screening identifies new scaffolds for covalent inhibition of the TEAD·YAP1 interaction(Royal Society of Chemistry, 2023-08-03) Bum-Erdene, Khuchtumur; Ghozayel, Mona K.; Zhang, Mark J.; Gonzalez-Gutierrez, Giovanni; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineTranscriptional enhanced associate domain (TEAD) binding to co-activator yes-associated protein (YAP1) leads to a transcription factor of the Hippo pathway. TEADs are regulated by S-palmitoylation of a conserved cysteine located in a deep well-defined hydrophobic pocket outside the TEAD·YAP1 interaction interface. Previously, we reported the discovery of a small molecule based on the structure of flufenamic acid that binds to the palmitate pocket, forms a covalent bond with the conserved cysteine, and inhibits TEAD4 binding to YAP1. Here, we screen a fragment library of chloroacetamide electrophiles to identify new scaffolds that bind to the palmitate pocket of TEADs and disrupt their interaction with YAP1. Time- and concentration-dependent studies with wild-type and mutant TEAD1-4 provided insight into their reaction rates and binding constants and established the compounds as covalent inhibitors of TEAD binding to YAP1. Binding pose hypotheses were generated by covalent docking revealing that the fragments and compounds engage lower, middle, and upper sub-sites of the palmitate pocket. Our fragments and compounds provide new scaffolds and starting points for the design of derivatives with improved inhibition potency of TEAD palmitoylation and binding to YAP1.Item A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein–Protein Interaction Interfaces(ACS, 2017-08) Xu, David; Bum-Erdene, Khuchtumur; Si, Yubing; Zhou, Donghui; Liu, Degang; Ghozayel, Mona; Meroueh, Samy; Biochemistry and Molecular Biology, School of MedicineThe binding affinity of a protein–protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein–protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein–protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein–protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein–protein interactions do not optimally mimic protein–ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.Item Covalent Fragment Screening Identifies Rgl2 RalGEF Cysteine for Targeted Covalent Inhibition of Ral GTPase Activation(Wiley, 2022) Bum-Erdene, Khuchtumur; Ghozayel, Mona K.; Xu, David; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineRal GTPases belong to the RAS superfamily, and they are directly activated by K-RAS. The RalGEF pathway is one of the three major K-RAS signaling pathways. Ral GTPases do not possess a cysteine nucleophile to develop a covalent inhibitor following the strategy that led to a K-RAS G12C therapeutic agent. However, several cysteine amino acids exist on the surface of guanine exchange factors that activate Ral GTPases, such as Rgl2. Here, we screen a library of cysteine electrophile fragments to determine if covalent bond formation at one of the Rgl2 surface cysteines could inhibit Ral GTPase activation. We found several chloroacetamide and acrylamide fragments that inhibited Ral GTPase exchange by Rgl2. Site-directed mutagenesis showed that covalent bond formation at Cys-284, but not other cysteines, leads to inhibition of Ral activation by Rgl2. Follow-up time- and concentration-dependent studies of derivatives identified by substructure search of commercial libraries further confirmed Cys-284 as the reaction site and identified the indoline fragments as the most promising series for further development. Cys-284 is located outside of the Ral•Rgl2 interface on a loop that has several residues that come in direct contact with Ral GTPases. Our allosteric covalent fragment inhibitors provide a starting point for the development of small-molecule covalent inhibitors to probe Ral GTPases in animal models.Item Crystal Packing Reveals a Potential Autoinhibited KRAS Dimer Interface and a Strategy for Small-Molecule Inhibition of RAS Signaling(American Chemical Society, 2023) Brenner, Robert J.; Landgraf, Alexander D.; Bum-Erdene, Khuchtumur; Gonzalez-Gutierrez, Giovanni; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineKRAS GTPases harbor oncogenic mutations in more than 25% of human tumors. KRAS is considered to be largely undruggable due to the lack of a suitable small-molecule binding site. Here, we report a unique crystal structure of His-tagged KRASG12D that reveals a remarkable conformational change. The Switch I loop of one His-KRASG12D structure extends into the Switch I/II pocket of another His-KRASG12D in an adjacent unit cell to create an elaborate interface that is reminiscent of high-affinity protein-protein complexes. We explore the contributions of amino acids at this interface using alanine-scanning studies with alchemical free energy perturbation calculations based on explicit-solvent molecular dynamics simulations. Several interface amino acids were found to be hot spots as they contributed more than 1.5 kcal/mol to the protein-protein interaction. Computational analysis of the complex revealed the presence of two large binding pockets that possess physicochemical features typically found in pockets considered druggable. Small-molecule binding to these pockets may stabilize this autoinhibited structure of KRAS if it exists in cells to provide a new strategy to inhibit RAS signaling.Item Design and Synthesis of Fragment Derivatives with a Unique Inhibition Mechanism of the uPAR·uPA Interaction(American Chemical Society, 2020) Bum-Erdene, Khuchtumur; Liu, Degang; Xu, David; Ghozayel, Mona K.; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of Medicine;There is substantial interest in the development of small molecules that inhibit the tight and highly challenging protein-protein interaction between the glycophosphatidylinositol (GPI)-anchored cell surface receptor uPAR and the serine protease uPA. While preparing derivatives of a fragment-like compound that previously emerged from a computational screen, we identified compound 5 (IPR-3242), which inhibited binding of uPA to uPAR with submicromolar IC50s. The high inhibition potency prompted us to carry out studies to rule out potential aggregation, lack of stability, reactivity, and nonspecific inhibition. We designed and prepared 16 derivatives to further explore the role of each substituent. Interestingly, the compounds only partially inhibited binding of a fluorescently labeled α-helical peptide that binds to uPAR at the uPAR·uPA interface. Collectively, the results suggest that the compounds bind to uPAR outside of the uPAR·uPA interface, trapping the receptor into a conformation that is not able to bind to uPA. Additional studies will have to be carried out to determine whether this unique inhibition mechanism can occur at the cell surface.Item Exploring a structural protein-drug interactome for new therapeutics in lung cancer(Royal Society of Chemistry, 2014-03-04) Peng, Xiaodong; Wang, Fang; Li, Liwei; Bum-Erdene, Khuchtumur; Xu, David; Wang, Bo; Sinn, Tony; Pollok, Karen; Sandusky, George; Li, Lang; Turchi, John; Jalal, Shadia I.; Meroueh, Samy; Department of Biochemistry & Molecular Biology, IU School of MedicineThe pharmacology of drugs is often defined by more than one protein target. This property can be exploited to use approved drugs to uncover new targets and signaling pathways in cancer. Towards enabling a rational approach to uncover new targets, we expand a structural protein-ligand interactome () by scoring the interaction among 1000 FDA-approved drugs docked to 2500 pockets on protein structures of the human genome. This afforded a drug-target network whose properties compared favorably with previous networks constructed using experimental data. Among drugs with the highest degree and betweenness two are cancer drugs and one is currently used for treatment of lung cancer. Comparison of predicted cancer and non-cancer targets reveals that the most cancer-specific compounds were also the most selective compounds. Analysis of compound flexibility, hydrophobicity, and size showed that the most selective compounds were low molecular weight fragment-like heterocycles. We use a previously-developed screening approach using the cancer drug erlotinib as a template to screen other approved drugs that mimic its properties. Among the top 12 ranking candidates, four are cancer drugs, two of them kinase inhibitors (like erlotinib). Cellular studies using non-small cell lung cancer (NSCLC) cells revealed that several drugs inhibited lung cancer cell proliferation. We mined patient records at the Regenstrief Medical Record System to explore the possible association of exposure to three of these drugs with occurrence of lung cancer. Preliminary in vivo studies using the non-small cell lung cancer (NCLSC) xenograft model showed that losartan- and astemizole-treated mice had tumors that weighed 50 (p < 0.01) and 15 (p < 0.01) percent less than the treated controls. These results set the stage for further exploration of these drugs and to uncover new drugs for lung cancer therapy.Item Exploring Covalent Bond Formation at Tyr-82 for Inhibition of Ral GTPase Activation(Wiley, 2023) Landgraf, Alexander D.; Yeh, I-Ju; Ghozayel, Mona K.; Bum-Erdene, Khuchtumur; Gonzalez-Gutierrez, Giovanni; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineRal RAS GTPases are directly activated by KRAS through a trimeric complex with a guanine exchange factor. Ral is considered undruggable and lacks an accessible cysteine for covalent drug development. Previously we had reported an aryl sulfonyl fluoride fragment that formed a covalent bond at Tyr-82 on Ral and created a deep and well-defined pocket. Here, we explore this pocket further through design and synthesis of several fragment derivatives. The fragment core is modified by introducing tetrahydronaphthalene or benzodioxane rings to enhance affinity and stability of the sulfonyl fluoride reactive group. The deep pocket in the Switch II region is also explored by modifying the aromatic ring of the fragment that is ensconced into the pocket. Compounds 19 (SOF-658) and 26 (SOF-648) formed a single robust adduct specifically at Tyr-82, inhibited Ral GTPase exchange in buffer and in mammalian cells, and blocked invasion of pancreatic ductal adenocarcinoma cancer cells. Compound 19 (SOF-658) was stable in buffer, mouse, and human microsomes suggesting that further optimization could lead to small molecules to probe Ral activity in tumor models.Item Mimicking Intermolecular Interactions of Tight Protein–Protein Complexes for Small-Molecule Antagonists(Wiley, 2017-11) Xu, David; Bum-Erdene, Khuchtumur; Si, Yubing; Zhou, Donghui; Ghozayel, Mona; Meroueh, Samy; Biochemistry and Molecular Biology, School of MedicineTight protein–protein interactions (Kd<100 nm) that occur over a large binding interface (>1000 Å2) are highly challenging to disrupt with small molecules. Historically, the design of small molecules to inhibit protein–protein interactions has focused on mimicking the position of interface protein ligand side chains. Here, we explore mimicry of the pairwise intermolecular interactions of the native protein ligand with residues of the protein receptor to enrich commercial libraries for small-molecule inhibitors of tight protein–protein interactions. We use the high-affinity interaction (Kd=1 nm) between the urokinase receptor (uPAR) and its ligand urokinase (uPA) to test our methods. We introduce three methods for rank-ordering small molecules docked to uPAR: 1) a new fingerprint approach that represents uPA′s pairwise interaction energies with uPAR residues; 2) a pharmacophore approach to identify small molecules that mimic the position of uPA interface residues; and 3) a combined fingerprint and pharmacophore approach. Our work led to small molecules with novel chemotypes that inhibited a tight uPAR⋅uPA protein–protein interaction with single-digit micromolar IC50 values. We also report the extensive work that identified several of the hits as either lacking stability, thiol reactive, or redox active. This work suggests that mimicking the binding profile of the native ligand and the position of interface residues can be an effective strategy to enrich commercial libraries for small-molecule inhibitors of tight protein–protein interactions.