ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Buechlein, Aaron"

Now showing 1 - 10 of 11
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A New Method for Stranded Whole Transcriptome RNA-seq
    (Elsevier, 2013) Miller, David F. B.; Yan, Pearlly S.; Buechlein, Aaron; Rodriguez, Benjamin A.; Yilmaz, Ayse S.; Goel, Shokhi; Lin, Hai; Collins-Burow, Bridgette; Rhodes, Lyndsay V.; Braun, Chris; Pradeep, Sunila; Rupaimoole, Rajesha; Dalkilic, Mehmet; Sood, Anil K.; Burow, Matthew E.; Tang, Haixu; Huang, Tim H.; Liu, Yunlong; Rusch, Douglas B.; Nephew, Kenneth P.; Cellular and Integrative Physiology, School of Medicine
    This report describes an improved protocol to generate stranded, barcoded RNA-seq libraries to capture the whole transcriptome. By optimizing the use of duplex specific nuclease (DSN) to remove ribosomal RNA reads from stranded barcoded libraries, we demonstrate improved efficiency of multiplexed next generation sequencing (NGS). This approach detects expression profiles of all RNA types, including miRNA (microRNA), piRNA (Piwi-interacting RNA), snoRNA (small nucleolar RNA), lincRNA (long non-coding RNA), mtRNA (mitochondrial RNA) and mRNA (messenger RNA) without the use of gel electrophoresis. The improved protocol generates high quality data that can be used to identify differential expression in known and novel coding and non-coding transcripts, splice variants, mitochondrial genes and SNPs (single nucleotide polymorphisms).
  • Loading...
    Thumbnail Image
    Item
    Changes in mRNA/protein expression and signaling pathways in in vivo passaged mouse ovarian cancer cells
    (Public Library of Science, 2018-06-21) Cai, Qingchun; Fan, Qipeng; Buechlein, Aaron; Miller, David; Nephew, Kenneth P.; Liu, Sheng; Wan, Jun; Xu, Yan; Obstetrics and Gynecology, School of Medicine
    The cure rate for late stage epithelial ovarian cancer (EOC) has not significantly improved over several decades. New and more effective targets and treatment modalities are urgently needed. RNA-seq analyses of a syngeneic EOC cell pair, representing more and less aggressive tumor cells in vivo were conducted. Bioinformatics analyses of the RNA-seq data and biological signaling and function studies have identified new targets, such as ZIP4 in EOC. Many up-regulated tumor promoting signaling pathways have been identified which are mainly grouped into three cellular activities: 1) cell proliferation and apoptosis resistance; 2) cell skeleton and adhesion changes; and 3) carbohydrate metabolic reprograming. Unexpectedly, lipid metabolism has been the major down-regulated signaling pathway in the more aggressive EOC cells. In addition, we found that hypoxic responsive genes were at the center stage of regulation and detected functional changes were related to cancer stem cell-like activities. Moreover, our genetic, cellular, biochemical, and lipidomic analyses indicated that cells grown in 2D vs. 3D, or attached vs. suspended had dramatic changes. The important clinical implications of peritoneal cavity floating tumor cells are supported by the data proved in this work. Overall, the RNA-seq data provide a landscape of gene expression alterations during tumor progression.
  • Loading...
    Thumbnail Image
    Item
    Constitutive activation of MEK5 promotes a mesenchymal and migratory cell phenotype in triple negative breast cancer
    (Impact Journals, 2021-05-18) Matossian, Margarite D.; Hoang, Van T.; Burks, Hope E.; La, Jacqueline; Elliott, Steven; Brock, Courtney; Rusch, Douglas B.; Buechlein, Aaron; Nephew, Kenneth P.; Bhatt, Akshita; Cavanaugh, Jane E.; Flaherty, Patrick T.; Collins-Burow, Bridgette M.; Burow, Matthew E.; Medicine, School of Medicine
    Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.
  • Loading...
    Thumbnail Image
    Item
    Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer
    (Impact Journals, 2015-06-30) Rhodes, Lyndsay V.; Martin, Elizabeth C.; Segar, H. Chris; Miller, David F. B.; Buechlein, Aaron; Rusch, Douglas B.; Nephew, Kenneth P.; Burow, Matthew E.; Collins-Burow, Bridgette M.; Department of Cellular & Integrative Physiology, IU School of Medicine
    Epithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype.
  • Loading...
    Thumbnail Image
    Item
    Epigenetic Targeting of Adipocytes Inhibits High-Grade Serous Ovarian Cancer Cell Migration and Invasion
    (American Association for Cancer Research, 2018-08) Tang, Jessica; Pulliam, Nicholas; Özeş, Ali; Buechlein, Aaron; Ding, Ning; Keer, Harold; Rusch, Doug; O’Hagan, Heather; Stack, M. Sharon; Nephew, Kenneth P.; Medical and Molecular Genetics, School of Medicine
    Ovarian cancer (OC) cells frequently metastasize to the omentum and adipocytes play a significant role in ovarian tumor progression. Therapeutic interventions targeting aberrant DNA methylation in ovarian tumors have shown promise in the clinic but the effects of epigenetic therapy on the tumor microenvironment are understudied. Here, we examined the effect of adipocytes on OC cell behavior in culture and impact of targeting DNA methylation in adipocytes on OC metastasis. The presence of adipocytes increased OC cell migration and invasion and proximal and direct co-culture of adipocytes increased OC proliferation alone or after treatment with carboplatin. Treatment of adipocytes with hypomethylating agent guadecitabine decreased migration and invasion of OC cells towards adipocytes. Subcellular protein fractionation of adipocytes treated with guadecitabine revealed decreased DNA methyltransferase 1 (DNMT1) levels even in the presence of DNA synthesis inhibitor, aphidicolin. Methyl-Capture- and RNA-sequencing analysis of guadecitabine-treated adipocytes revealed derepression of tumor suppressor genes and EMT inhibitors. SUSD2, a secreted tumor suppressor downregulated by promoter CpG island methylation in adipocytes, was upregulated after guadecitabine treatment, and recombinant SUSD2 decreased OC cells migration and invasion. Integrated analysis of the methylomic and transcriptomic data identified pathways associated with inhibition of matrix metalloproteases and fatty acid α-oxidation suggesting a possible mechanism of how epigenetic therapy of adipocytes decreases metastasis. In conclusion, the effect of DNMT inhibitor on fully differentiated adipocytes suggests that hypomethylating agents may impact the tumor microenvironment to decrease cancer cell metastasis.
  • Loading...
    Thumbnail Image
    Item
    Experimental competition induces immediate and lasting effects on the neurogenome in free-living female birds
    (National Academy of Sciences, 2021-03-30) Bentz, Alexandra B.; George, Elizabeth M.; Wolf, Sarah E.; Rusch, Douglas B.; Podicheti, Ram; Buechlein, Aaron; Nephew, Kenneth P.; Rosvall, Kimberly A.; Biology, School of Science
    Periods of social instability can elicit adaptive phenotypic plasticity to promote success in future competition. However, the underlying molecular mechanisms have primarily been studied in captive and laboratory-reared animals, leaving uncertainty as to how natural competition among free-living animals affects gene activity. Here, we experimentally generated social competition among wild, cavity-nesting female birds (tree swallows, Tachycineta bicolor). After territorial settlement, we reduced the availability of key breeding resources (i.e., nest boxes), generating heightened competition; within 24 h we reversed the manipulation, causing aggressive interactions to subside. We sampled females during the peak of competition and 48 h after it ended, along with date-matched controls. We measured transcriptomic and epigenomic responses to competition in two socially relevant brain regions (hypothalamus and ventromedial telencephalon). Gene network analyses suggest that processes related to energy mobilization and aggression (e.g., dopamine synthesis) were up-regulated during competition, the latter of which persisted 2 d after competition had ended. Cellular maintenance processes were also down-regulated after competition. Competition additionally altered methylation patterns, particularly in pathways related to hormonal signaling, suggesting those genes were transcriptionally poised to respond to future competition. Thus, experimental competition among free-living animals shifts gene expression in ways that may facilitate the demands of competition at the expense of self-maintenance. Further, some of these effects persisted after competition ended, demonstrating the potential for epigenetic biological embedding of the social environment in ways that may prime individuals for success in future social instability.
  • Loading...
    Thumbnail Image
    Item
    NEK5 activity regulates the mesenchymal and migratory phenotype in breast cancer cells
    (Springer, 2021-08) Matossian, Margarite; Elliott, Steven; Hoang, Van T.; Burks, Hope E.; Wright, Maryl K.; Alzoubi, Madlin; Yan, Thomas; Chang, Tiffany; Wathieu, Henri; Windsor, Gabrielle; Hartono, Alifiani Bo; Lee, Sean; Zuercher, William J.; Drewry, David H.; Wells, Carrow; Kapadia, Nirav; Buechlein, Aaron; Fang, Fang; Nephew, Kenneth P.; Collins-Burow, Bridgette M.; Burow, Matthew E.; Medicine, School of Medicine
    Purpose Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. Methods Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. Results NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. Conclusion While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression.
  • Loading...
    Thumbnail Image
    Item
    Pten and Dicer1 loss in the mouse uterus causes poorly-differentiated endometrial adenocarcinoma
    (Springer Nature, 2020-10) Wang, Xiyin; Wendel, Jillian R. H.; Emerson, Robert E.; Broaddus, Russell R.; Creighton, Chad J.; Rusch, Douglas B.; Buechlein, Aaron; DeMayo, Francesco J.; Lydon, John P.; Hawkins, Shannon M.; Obstetrics and Gynecology, School of Medicine
    Endometrial cancer remains the most common gynecological malignancy in the United States. While the loss of the tumor suppressor, PTEN (phosphatase and tensin homolog), is well studied in endometrial cancer, recent studies suggest that DICER1, the endoribonuclease responsible for miRNA genesis, also plays a significant role in endometrial adenocarcinoma. Conditional uterine deletion of Dicer1 and Pten in mice resulted in poorly differentiated endometrial adenocarcinomas, which expressed Napsin A and HNF1B (hepatocyte nuclear factor 1 homeobox B), markers of clear-cell adenocarcinoma. Adenocarcinomas were hormone-independent. Treatment with progesterone did not mitigate poorly differentiated adenocarcinoma, nor did it affect adnexal metastasis. Transcriptomic analyses of DICER1 deleted uteri or Ishikawa cells revealed unique transcriptomic profiles and global miRNA downregulation. Computational integration of miRNA with mRNA targets revealed deregulated let-7 and miR-16 target genes, similar to published human DICER1-mutant endometrial cancers from TCGA (The Cancer Genome Atlas). Similar to human endometrial cancers, tumors exhibited dysregulation of ephrin-receptor signaling and transforming growth factor-beta signaling pathways. LIM kinase 2 (LIMK2), an essential molecule in p21 signal transduction, was significantly upregulated and represents a novel mechanism for hormone-independent pathogenesis of endometrial adenocarcinoma. This preclinical mouse model represents the first genetically engineered mouse model of poorly differentiated endometrial adenocarcinoma.
  • Loading...
    Thumbnail Image
    Item
    Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS
    (Nature Publishing Group, 2020-09-21) Wu, Xue; Niculite, Cristina M.; Preda, Mihai Bogdan; Rossi, Annalisa; Tebaldi, Toma; Butoi, Elena; White, Mattie K.; Tudoran, Oana M.; Petrusca, Daniela N.; Jannasch, Amber S.; Bone, William P.; Zong, Xingyue; Fang, Fang; Burlacu, Alexandrina; Paulsen, Michelle T.; Hancock, Brad A.; Sandusky, George E.; Mitra, Sumegha; Fishel, Melissa L.; Buechlein, Aaron; Ivan, Cristina; Oikonomopoulos, Spyros; Gorospe, Myriam; Mosley, Amber; Radovich, Milan; Davé, Utpal P.; Ragoussis, Jiannis; Nephew, Kenneth P.; Mari, Bernard; McIntyre, Alan; Konig, Heiko; Ljungman, Mats; Cousminer, Diana L.; Macchi, Paolo; Ivan, Mircea; Medicine, School of Medicine
    We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance.
  • Loading...
    Thumbnail Image
    Item
    Transcriptomic analyses of ovarian clear-cell carcinoma with concurrent endometriosis
    (Frontiers, 2023-08-08) Collins, Kaitlyn E.; Wang, Xiyin; Klymenko, Yuliya; Davis, Noah B.; Martinez, Maria C.; Zhang, Chi; So, Kaman; Buechlein, Aaron; Rusch, Douglas B.; Creighton, Chad J.; Hawkins, Shannon M.; Obstetrics and Gynecology, School of Medicine
    Introduction: Endometriosis, a benign inflammatory disease whereby endometrial-like tissue grows outside the uterus, is a risk factor for endometriosis-associated ovarian cancers. In particular, ovarian endometriomas, cystic lesions of deeply invasive endometriosis, are considered the precursor lesion for ovarian clear-cell carcinoma (OCCC). Methods: To explore this transcriptomic landscape, OCCC from women with pathology-proven concurrent endometriosis (n = 4) were compared to benign endometriomas (n = 4) by bulk RNA and small-RNA sequencing. Results: Analysis of protein-coding genes identified 2449 upregulated and 3131 downregulated protein-coding genes (DESeq2, P< 0.05, log2 fold-change > |1|) in OCCC with concurrent endometriosis compared to endometriomas. Gene set enrichment analysis showed upregulation of pathways involved in cell cycle regulation and DNA replication and downregulation of pathways involved in cytokine receptor signaling and matrisome. Comparison of pathway activation scores between the clinical samples and publicly-available datasets for OCCC cell lines revealed significant molecular similarities between OCCC with concurrent endometriosis and OVTOKO, OVISE, RMG1, OVMANA, TOV21G, IGROV1, and JHOC5 cell lines. Analysis of miRNAs revealed 64 upregulated and 61 downregulated mature miRNA molecules (DESeq2, P< 0.05, log2 fold-change > |1|). MiR-10a-5p represented over 21% of the miRNA molecules in OCCC with endometriosis and was significantly upregulated (NGS: log2fold change = 4.37, P = 2.43e-18; QPCR: 8.1-fold change, P< 0.05). Correlation between miR-10a expression level in OCCC cell lines and IC50 (50% inhibitory concentration) of carboplatin in vitro revealed a positive correlation (R2 = 0.93). MiR-10a overexpression in vitro resulted in a significant decrease in proliferation (n = 6; P< 0.05) compared to transfection with a non-targeting control miRNA. Similarly, the cell-cycle analysis revealed a significant shift in cells from S and G2 to G1 (n = 6; P< 0.0001). Bioinformatic analysis predicted that miR-10a-5p target genes that were downregulated in OCCC with endometriosis were involved in receptor signaling pathways, proliferation, and cell cycle progression. MiR-10a overexpression in vitro was correlated with decreased expression of predicted miR-10a target genes critical for proliferation, cell-cycle regulation, and cell survival including [SERPINE1 (3-fold downregulated; P< 0.05), CDK6 (2.4-fold downregulated; P< 0.05), and RAP2A (2-3-fold downregulated; P< 0.05)]. Discussion: These studies in OCCC suggest that miR-10a-5p is an impactful, potentially oncogenic molecule, which warrants further studies.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University