ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Buckner, Hallie"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    COVID-associated non-vasculitic thrombotic retiform purpura of the face and extremities: A case report
    (Wiley, 2022-12-27) Bunch, Connor M.; Zackariya, Nuha; Thomas, Anthony V.; Langford, Jack H.; Aboukhaled, Michael; Thomas, Samuel J.; Ansari, Aida; Patel, Shivani S.; Buckner, Hallie; Miller, Joseph B.; Annis, Christy L.; Quate-Operacz, Margaret A.; Schmitz, Leslie A.; Pulvirenti, Joseph J.; Konopinski, Jonathan C.; Kelley, Kathleen M.; Hassna, Samer; Nelligan, Luke G.; Walsh, Mark M.; Medicine, School of Medicine
    SARS-CoV-2 infection can manifest many rashes. However, thrombotic retiform purpura rarely occurs during COVID-19 illness. Aggressive anti-COVID-19 therapy with a high-dose steroid regimen led to rapid recovery. This immunothrombotic phenomenon likely represents a poor type 1 interferon response and complement activation on the endothelial surface in response to acute infection.
  • Loading...
    Thumbnail Image
    Item
    Immuno-Thrombotic Complications of COVID-19: Implications for Timing of Surgery and Anticoagulation
    (Frontiers Media, 2022-05-04) Bunch, Connor M.; Moore, Ernest E.; Moore, Hunter B.; Neal, Matthew D.; Thomas, Anthony V.; Zackariya, Nuha; Zhao, Jonathan; Zackariya, Sufyan; Brenner, Toby J.; Berquist, Margaret; Buckner, Hallie; Wiarda, Grant; Fulkerson, Daniel; Huff, Wei; Kwaan, Hau C.; Lankowicz, Genevieve; Laubscher, Gert J.; Lourens, Petrus J.; Pretorius, Etheresia; Kotze, Maritha J.; Moolla, Muhammad S.; Sithole, Sithembiso; Maponga, Tongai G.; Kell, Douglas B.; Fox, Mark D.; Gillespie, Laura; Khan, Rashid Z.; Mamczak, Christiaan N.; March, Robert; Macias, Rachel; Bull, Brian S.; Walsh, Mark M.; Surgery, School of Medicine
    Early in the coronavirus disease 2019 (COVID-19) pandemic, global governing bodies prioritized transmissibility-based precautions and hospital capacity as the foundation for delay of elective procedures. As elective surgical volumes increased, convalescent COVID-19 patients faced increased postoperative morbidity and mortality and clinicians had limited evidence for stratifying individual risk in this population. Clear evidence now demonstrates that those recovering from COVID-19 have increased postoperative morbidity and mortality. These data-in conjunction with the recent American Society of Anesthesiologists guidelines-offer the evidence necessary to expand the early pandemic guidelines and guide the surgeon's preoperative risk assessment. Here, we argue elective surgeries should still be delayed on a personalized basis to maximize postoperative outcomes. We outline a framework for stratifying the individual COVID-19 patient's fitness for surgery based on the symptoms and severity of acute or convalescent COVID-19 illness, coagulopathy assessment, and acuity of the surgical procedure. Although the most common manifestation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19 pneumonitis, every system in the body is potentially afflicted by an endotheliitis. This endothelial derangement most often manifests as a hypercoagulable state on admission with associated occult and symptomatic venous and arterial thromboembolisms. The delicate balance between hyper and hypocoagulable states is defined by the local immune-thrombotic crosstalk that results commonly in a hemostatic derangement known as fibrinolytic shutdown. In tandem, the hemostatic derangements that occur during acute COVID-19 infection affect not only the timing of surgical procedures, but also the incidence of postoperative hemostatic complications related to COVID-19-associated coagulopathy (CAC). Traditional methods of thromboprophylaxis and treatment of thromboses after surgery require a tailored approach guided by an understanding of the pathophysiologic underpinnings of the COVID-19 patient. Likewise, a prolonged period of risk for developing hemostatic complications following hospitalization due to COVID-19 has resulted in guidelines from differing societies that recommend varying periods of delay following SARS-CoV-2 infection. In conclusion, we propose the perioperative, personalized assessment of COVID-19 patients' CAC using viscoelastic hemostatic assays and fluorescent microclot analysis.
  • Loading...
    Thumbnail Image
    Item
    Resonant acoustic rheometry for assessing plasma coagulation in bleeding patients
    (Springer Nature, 2025-02-11) Li, Weiping; Bunch, Connor M.; Zackariya, Sufyan; Patel, Shivani S.; Buckner, Hallie; Condon, Shaun; Walsh, Matthew R.; Miller, Joseph B.; Walsh, Mark M.; Hall, Timothy L.; Jin, Jionghua; Stegemann, Jan P.; Deng, Cheri X.; Emergency Medicine, School of Medicine
    Disordered hemostasis associated with life-threatening hemorrhage commonly afflicts patients in the emergency department, critical care unit, and perioperative settings. Rapid and sensitive hemostasis phenotyping is needed to guide administration of blood components and hemostatic adjuncts to reverse aberrant hemostasis. Here, we report the use of resonant acoustic rheometry (RAR), a technique that quantifies the viscoelastic properties of soft biomaterials, for assessing plasma coagulation in a cohort of 38 bleeding patients admitted to the hospital. RAR captured the dynamic characteristics of plasma coagulation that were dependent on coagulation activators or reagent conditions. RAR coagulation parameters correlated with TEG reaction time and TEG functional fibrinogen, especially when stratified by comorbidities. A quadratic classifier trained on selective RAR parameters predicted transfusion of fresh frozen plasma and cryoprecipitate with modest to high overall accuracy. While these results demonstrate the feasibility of RAR for plasma coagulation and utility of a machine learning model, the relative small number of patients, especially the small number of patients who received transfusion, is a limitation of this study. Further studies are need to test a larger number of patients to further validate the capability of RAR as a cost-effective and sensitive hemostasis assay to obtain quantitative data to guide clinical-decision making in managing severely hemorrhaging patients.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University