- Browse by Author
Browsing by Author "Buckley, Michael F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations(Elsevier, 2022-09) Dias, Kerith-Rae; Carlston, Colleen M.; Blok, Laura E. R.; De Hayr , Lachlan; Nawaz, Urwah; Evans, Carey-Anne; Bayrak-Toydemir, Pinar; Htun, Stephanie; Zhu, Ying; Ma, Alan; Lynch, Sally Ann; Moorwood, Catherine; Stals , Karen; Ellard, Sian; Bainbridge, Matthew N.; Friedman, Jennifer; Pappas, John G.; Rabin , Rachel; Nowak, Catherine B.; Douglas, Jessica; Wilson, Theodore E.; Guillen Sacoto, Maria J.; Mullegama, Sureni V.; Palculict , Timothy Blake; Kirk, Edwin P.; Pinner, Jason R.; Edwards, Matthew; Montanari, Francesca; Graziano, Claudio; Pippucci, Tommaso; Dingmann, Bri; Glass , Ian; Mefford , Heather C.; Shimoji , Takeyoshi; Suzuki, Toshimitsu; Yamakawa, Kazuhiro; Streff, Haley; Schaaf, Christian P.; Slavotinek, Anne M.; Voineagu , Irina; Carey, John C.; Buckley, Michael F.; Schenck, Annette; Harvey, Robert J.; Roscioli , Tony; Medical and Molecular Genetics, School of MedicinePurpose ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. Methods An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. Results ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the Drosophila ZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. Conclusion We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.Item Missense variants in TAF1 and developmental phenotypes: Challenges of determining pathogenicity(Wiley, 2019-10-23) Cheng, Hanyin; Capponi, Simona; Wakeling, Emma; Marchi, Elaine; Li, Quan; Zhao, Mengge; Weng, Chunhua; Piatek, Stefan G.; Ahlfors, Helena; Kleyner, Robert; Rope, Alan; Lumaka, Aimé; Lukusa, Prosper; Devriendt, Koenraad; Vermeesch, Joris; Posey, Jennifer E.; Palmer, Elizabeth E.; Murray, Lucinda; Leon, Eyby; Diaz, Jullianne; Worgan, Lisa; Mallawaarachchi, Amali; Vogt, Julie; de Munnik, Sonja A.; Dreyer, Lauren; Baynam, Gareth; Ewans, Lisa; Stark, Zornitza; Lunke, Sebastian; Gonçalves, Ana R.; Soares, Gabriela; Oliveira, Jorge; Fassi, Emily; Willing, Marcia; Waugh, Jeff L.; Faivre, Laurence; Riviere, Jean-Baptiste; Moutton, Sebastien; Mohammed, Shehla; Payne, Katelyn; Walsh, Laurence; Begtrup, Amber; Guillen Sacoto, Maria J.; Douglas, Ganka; Alexander, Nora; Buckley, Michael F.; Mark, Paul R.; Adès, Lesley C.; Sandaradura, Sarah A.; Lupski, James R.; Roscioli, Tony; Agrawal, Pankaj B.; Kline, Antonie D.; Wang, Kai; Timmers, T. Marc; Lyon, Gholson J.; Neurology, School of MedicineWe recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X.