ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Buchl, Samuel C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Coordinated signaling of activating transcription factor 6α and inositol-requiring enzyme 1α regulates hepatic stellate cell-mediated fibrogenesis in mice
    (American Physiological Society, 2021) Xue, Fei; Lu, Jianwen; Buchl, Samuel C.; Sun, Liankang; Shah, Vijay H.; Malhi, Harmeet; Maiers, Jessica L.; Medicine, School of Medicine
    Liver injury and the unfolded protein response (UPR) are tightly linked, but their relationship differs with cell type and injurious stimuli. UPR initiation promotes hepatic stellate cell (HSC) activation and fibrogenesis, but the underlying mechanisms are unclear. Despite the complexity and overlap downstream of UPR transducers inositol-requiring protein 1α (IRE1α), activating transcription factor 6α (ATF6α), and protein kinase RNA-like ER kinase (PERK), previous research in HSCs primarily focused on IRE1α. Here, we investigated the fibrogenic role of ATF6α or PERK in vitro and HSC-specific UPR signaling in vivo. Overexpression of ATF6α, but not the PERK effector activating transcription factor 4 (ATF4), promoted HSC activation and fibrogenic gene transcription in immortalized HSCs. Furthermore, ATF6α inhibition through Ceapin-A7, or Atf6a deletion, disrupted transforming growth factor β (TGFβ)-mediated activation of primary human hepatic stellate cells (hHSCs) or murine hepatic stellate cells (mHSCs), respectively. We investigated the fibrogenic role of ATF6α in vivo through conditional HSC-specific Atf6a deletion. Atf6aHSCΔ/Δ mice displayed reduced fibrosis and HSC activation following bile duct ligation (BDL) or carbon tetrachloride (CCl4)-induced injury. The Atf6aHSCΔ/Δ phenotype differed from HSC-specific Ire1a deletion, as Ire1aHSCΔ/Δ mice showed reduced fibrogenic gene transcription but no changes in fibrosis compared with Ire1afl/fl mice following BDL. Interestingly, ATF6α signaling increased in Ire1aΔ/Δ HSCs, whereas IRE1α signaling was upregulated in Atf6aΔ/Δ HSCs. Finally, we asked whether co-deletion of Atf6a and Ire1a additively limits fibrosis. Unexpectedly, fibrosis worsened in Atf6aHSCΔ/ΔIre1aHSCΔ/Δ mice following BDL, and Atf6aΔ/ΔIre1aΔ/Δ mHSCs showed increased fibrogenic gene transcription. ATF6α and IRE1α individually promote fibrogenic transcription in HSCs, and ATF6α drives fibrogenesis in vivo. Unexpectedly, disruption of both pathways sensitizes the liver to fibrogenesis, suggesting that fine-tuned UPR signaling is critical for regulating HSC activation and fibrogenesis. NEW & NOTEWORTHY: ATF6α is a critical driver of hepatic stellate cell (HSC) activation in vitro. HSC-specific deletion of Atf6a limits fibrogenesis in vivo despite increased IRE1α signaling. Conditional deletion of Ire1α from HSCs limits fibrogenic gene transcription without impacting overall fibrosis. This could be due in part to observed upregulation of the ATF6α pathway. Dual loss of Atf6a and Ire1a from HSCs worsens fibrosis in vivo through enhanced HSC activation.
  • Loading...
    Thumbnail Image
    Item
    Traf2 and NCK Interacting Kinase Is a Critical Regulator of Procollagen I Trafficking and Hepatic Fibrogenesis in Mice
    (Wiley, 2022-03) Buchl, Samuel C.; Hanquier, Zachary; Haak, Andrew J.; Thomason, Yvonne M.; Huebert, Robert C.; Shah, Vijay H.; Maiers, Jessica L.; Medicine, School of Medicine
    Hepatic fibrosis is driven by deposition of matrix proteins following liver injury. Hepatic stellate cells (HSCs) drive fibrogenesis, producing matrix proteins, including procollagen I, which matures into collagen I following secretion. Disrupting intracellular procollagen processing and trafficking causes endoplasmic reticulum stress and stress-induced HSC apoptosis and thus is an attractive antifibrotic strategy. We designed an immunofluorescence-based small interfering RNA (siRNA) screen to identify procollagen I trafficking regulators, hypothesizing that these proteins could serve as antifibrotic targets. A targeted siRNA screen was performed using immunofluorescence to detect changes in intracellular procollagen I. Tumor necrosis factor receptor associated factor 2 and noncatalytic region of tyrosine kinase-interacting kinase (TNIK) was identified and interrogated in vitro and in vivo using the TNIK kinase inhibitor NCB-0846 or RNA interference-mediated knockdown. Our siRNA screen identified nine genes whose knockdown promoted procollagen I retention, including the serine/threonine kinase TNIK. Genetic deletion or pharmacologic inhibition of TNIK through the small molecule inhibitor NCB-0846 disrupted procollagen I trafficking and secretion without impacting procollagen I expression. To investigate the role of TNIK in liver fibrogenesis, we analyzed human and murine livers, finding elevated TNIK expression in human cirrhotic livers and increased TNIK expression and kinase activity in both fibrotic mouse livers and activated primary human HSCs. Finally, we tested whether inhibition of TNIK kinase activity could limit fibrogenesis in vivo. Mice receiving NCB-0846 displayed reduced CCl4-induced fibrogenesis compared to CCl4 alone, although α-smooth muscle actin levels were unaltered. Conclusions: Our siRNA screen effectively identified TNIK as a key kinase involved in procollagen I trafficking in vitro and hepatic fibrogenesis in vivo.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University