- Browse by Author
Browsing by Author "Brown, Carolyn J."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells(Elsevier, 2021) Beetch, Megan; Boycott, Cayla; Harandi-Zadeh, Sadaf; Yang, Tony; Martin, Benjamin J. E.; Dixon-McDougall, Thomas; Ren, Kevin; Gacad, Allison; Dupuis, John H.; Ullmer, Melissa; Lubecka, Katarzyna; Yada, Rickey Y.; Brown, Carolyn J.; Howe, LeAnn J.; Stefanska, Barbara; Anatomy, Cell Biology and Physiology, School of MedicineTranscription factor (TF)-mediated regulation of genes is often disrupted during carcinogenesis. The DNA methylation state of TF-binding sites may dictate transcriptional activity of corresponding genes. Stilbenoid polyphenols, such as pterostilbene (PTS), have been shown to exert anti-cancer action by remodeling DNA methylation and gene expression. However, the mechanisms behind these effects still remain unclear. Here, the dynamics between oncogenic TF OCT1 binding and de novo DNA methyltransferase DNMT3B binding in PTS-treated MCF10CA1a invasive breast cancer cells has been explored. Using chromatin immunoprecipitation (ChIP) followed by next generation sequencing, we determined 47 gene regulatory regions with decreased OCT1 binding and enriched DNMT3B binding in response to PTS. Most of those genes were found to have oncogenic functions. We selected three candidates, PRKCA, TNNT2 and DANT2, for further mechanistic investigation taking into account PRKCA functional and regulatory connection with numerous cancer-driving processes and pathways, and some of the highest increase in DNMT3B occupancy within TNNT2 and DANT2 enhancers. PTS led to DNMT3B recruitment within PRKCA, TNNT2, and DANT2 at loci that also displayed reduced OCT1 binding. Substantial decrease in OCT1 with increased DNMT3B binding were accompanied by PRKCA promoter and TNNT2 and DANT2 enhancer hypermethylation, and gene silencing. Interestingly, DNA hypermethylation of the genes was not detected in response to PTS in DNMT3B-CRISPR knockout MCF10CA1a breast cancer cells. It indicates DNMT3B-dependent methylation of PRKCA, TNNT2, and DANT2 upon PTS. Our findings provide a better understanding of mechanistic players and their gene targets that possibly contribute to the anti-cancer action of stilbenoid polyphenols.