ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Brooks, Alison"

Now showing 1 - 10 of 15
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Are EPB41 and alpha-synuclein diagnostic biomarkers of sport-related concussion? Findings from the NCAA and Department of Defense CARE Consortium
    (Elsevier, 2023) Vorn, Rany; Devoto, Christina; Meier, Timothy B.; Lai, Chen; Yun, Sijung; Broglio, Steven P.; Mithani, Sara; McAllister, Thomas W.; Giza, Christopher C.; Kim, Hyung-Suk; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth L.; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin M.; Mihalik, Jason P.; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; McCrea, Michael A.; Gill, Jessica M.; CARE Consortium Investigators; Psychiatry, School of Medicine
    Background: Current protein biomarkers are only moderately predictive at identifying individuals with mild traumatic brain injury or concussion. Therefore, more accurate diagnostic markers are needed for sport-related concussion. Methods: This was a multicenter, prospective, case-control study of athletes who provided blood samples and were diagnosed with a concussion or were a matched non-concussed control within the National Collegiate Athletic Association-Department of Defense Concussion Assessment, Research, and Education Consortium conducted between 2015 and 2019. The blood was collected within 48 h of injury to identify protein abnormalities at the acute and subacute timepoints. Athletes with concussion were divided into 6 h post-injury (0-6 h post-injury) and after 6 h post-injury (7-48 h post-injury) groups. We applied a highly multiplexed proteomic technique that used a DNA aptamers assay to target 1305 proteins in plasma samples from athletes with and without sport-related concussion. Results: A total of 140 athletes with concussion (79.3% males; aged 18.71 ± 1.10 years, mean ± SD) and 21 non-concussed athletes (76.2% males; 19.14 ± 1.10 years) were included in this study. We identified 338 plasma proteins that significantly differed in abundance (319 upregulated and 19 downregulated) in concussed athletes compared to non-concussed athletes. The top 20 most differentially abundant proteins discriminated concussed athletes from non-concussed athletes with an area under the curve (AUC) of 0.954 (95% confidence interval: 0.922‒0.986). Specifically, after 6 h of injury, the individual AUC of plasma erythrocyte membrane protein band 4.1 (EPB41) and alpha-synuclein (SNCA) were 0.956 and 0.875, respectively. The combination of EPB41 and SNCA provided the best AUC (1.000), which suggests this combination of candidate plasma biomarkers is the best for diagnosing concussion in athletes after 6 h of injury. Conclusion: Our data suggest that proteomic profiling may provide novel diagnostic protein markers and that a combination of EPB41 and SNCA is the most predictive biomarker of concussion after 6 h of injury.
  • Loading...
    Thumbnail Image
    Item
    Assessment of Blood Biomarker Profile After Acute Concussion During Combative Training Among US Military Cadets
    (JAMA, 2021-02) Giza, Christopher C.; McCrea, Michael; Huber, Daniel; Cameron, Kenneth L.; Houston, Megan N.; Jackson, Jonathan C.; McGinty, Gerald; Pasquina, Paul; Broglio, Steven P.; Brooks, Alison; DiFiori, John; Duma, Stefan; Harezlak, Jaroslaw; Goldman, Joshua; Guskiewicz, Kevin; McAllister, Thomas W.; McArthur, David; Meier, Timothy B.; Mihalik, Jason P.; Nelson, Lindsay D.; Rowson, Steven; Gill, Jessica; Foroud, Tatiana; Katz, Barry; Saykin, Andrew; Campbell, Darren E.; Svoboda, Steven; Psychiatry, School of Medicine
    Importance: Validation of protein biomarkers for concussion diagnosis and management in military combative training is important, as these injuries occur outside of traditional health care settings and are generally difficult to diagnose. Objective: To investigate acute blood protein levels in military cadets after combative training-associated concussions. Design, setting, and participants: This multicenter prospective case-control study was part of a larger cohort study conducted by the National Collegiate Athletic Association and the US Department of Defense Concussion Assessment Research and Education (CARE) Consortium from February 20, 2015, to May 31, 2018. The study was performed among cadets from 2 CARE Consortium Advanced Research Core sites: the US Military Academy at West Point and the US Air Force Academy. Cadets who incurred concussions during combative training (concussion group) were compared with cadets who participated in the same combative training exercises but did not incur concussions (contact-control group). Clinical measures and blood sample collection occurred at baseline, the acute postinjury point (<6 hours), the 24- to 48-hour postinjury point, the asymptomatic postinjury point (defined as the point at which the cadet reported being asymptomatic and began the return-to-activity protocol), and 7 days after return to activity. Biomarker levels and estimated mean differences in biomarker levels were natural log (ln) transformed to decrease the skewness of their distributions. Data were collected from August 1, 2016, to May 31, 2018, and analyses were conducted from March 1, 2019, to January 14, 2020. Exposure: Concussion incurred during combative training. Main outcomes and measures: Proteins examined included glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, neurofilament light chain, and tau. Quantification was conducted using a multiplex assay (Simoa; Quanterix Corp). Clinical measures included the Sport Concussion Assessment Tool-Third Edition symptom severity evaluation, the Standardized Assessment of Concussion, the Balance Error Scoring System, and the 18-item Brief Symptom Inventory. Results: Among 103 military service academy cadets, 67 cadets incurred concussions during combative training, and 36 matched cadets who engaged in the same training exercises did not incur concussions. The mean (SD) age of cadets in the concussion group was 18.6 (1.3) years, and 40 cadets (59.7%) were male. The mean (SD) age of matched cadets in the contact-control group was 19.5 (1.3) years, and 25 cadets (69.4%) were male. Compared with cadets in the contact-control group, those in the concussion group had significant increases in glial fibrillary acidic protein (mean difference in ln values, 0.34; 95% CI, 0.18-0.50; P < .001) and ubiquitin C-terminal hydrolase-L1 (mean difference in ln values, 0.97; 95% CI, 0.44-1.50; P < .001) levels at the acute postinjury point. The glial fibrillary acidic protein level remained high in the concussion group compared with the contact-control group at the 24- to 48-hour postinjury point (mean difference in ln values, 0.22; 95% CI, 0.06-0.38; P = .007) and the asymptomatic postinjury point (mean difference in ln values, 0.21; 95% CI, 0.05-0.36; P = .01). The area under the curve for all biomarkers combined, which was used to differentiate cadets in the concussion and contact-control groups, was 0.80 (95% CI, 0.68-0.93; P < .001) at the acute postinjury point. Conclusions and relevance: This study's findings indicate that blood biomarkers have potential for use as research tools to better understand the pathobiological changes associated with concussion and to assist with injury identification and recovery from combative training-associated concussions among military service academy cadets. These results extend the previous findings of studies of collegiate athletes with sport-associated concussions.
  • Loading...
    Thumbnail Image
    Item
    Comparison of Head Impact Exposure Between Concussed Football Athletes and Matched Controls: Evidence for a Possible Second Mechanism of Sport-Related Concussion
    (Springer, 2018) Stemper, Brian D.; Shah, Alok S.; Harezlak, Jaroslaw; Rowson, Steven; Mihalik, Jason P.; Duma, Stefan M.; Riggen, Larry D.; Brooks, Alison; Cameron, Kenneth L.; Campbell, Darren; DiFiori, John P.; Giza, Christopher C.; Guskiewicz, Kevin M.; Jackson, Jonathan; McGinty, Gerald T.; Svoboda, Steven J.; McAllister, Thomas W.; Broglio, Steven P.; McCrea, Michael; Psychiatry, School of Medicine
    Studies of football athletes have implicated repetitive head impact exposure in the onset of cognitive and brain structural changes, even in the absence of diagnosed concussion. Those studies imply accumulating damage from successive head impacts reduces tolerance and increases risk for concussion. Support for this premise is that biomechanics of head impacts resulting in concussion are often not remarkable when compared to impacts sustained by athletes without diagnosed concussion. Accordingly, this analysis quantified repetitive head impact exposure in a cohort of 50 concussed NCAA Division I FBS college football athletes compared to controls that were matched for team and position group. The analysis quantified the number of head impacts and risk weighted exposure both on the day of injury and for the season to the date of injury. 43% of concussed athletes had the most severe head impact exposure on the day of injury compared to their matched control group and 46% of concussed athletes had the most severe head impact exposure for the season to the date of injury compared to their matched control group. When accounting for date of injury or season to date of injury, 72% of all concussed athletes had the most or second most severe head impact exposure compared to their matched control group. These trends associating cumulative head impact exposure with concussion onset were stronger for athletes that participated in a greater number of contact activities. For example, 77% of athletes that participated in ten or more days of contact activities had greater head impact exposure than their matched control group. This unique analysis provided further evidence for the role of repetitive head impact exposure as a predisposing factor for the onset of concussion. The clinical implication of these findings supports contemporary trends of limiting head impact exposure for college football athletes during practice activities in an effort to also reduce risk of concussive injury.
  • Loading...
    Thumbnail Image
    Item
    Diffusion tensor analysis of white matter tracts is prognostic of persisting post-concussion symptoms in collegiate athletes
    (Elsevier, 2024) Bertò, Giulia; Rooks, Lauren T.; Broglio, Steven P.; McAllister, Thomas A.; McCrea, Michael A.; Pasquina, Paul F.; Giza, Christopher; Brooks, Alison; Mihalik, Jason; Guskiewicz, Kevin; Goldman, Josh; Duma, Stefan; Rowson, Steven; Port, Nicholas L.; Pestilli, Franco; Psychiatry, School of Medicine
    Background and objectives: After a concussion diagnosis, the most important issue for patients and loved ones is how long it will take them to recover. The main objective of this study is to develop a prognostic model of concussion recovery. This model would benefit many patients worldwide, allowing for early treatment intervention. Methods: The Concussion Assessment, Research and Education (CARE) consortium study enrolled collegiate athletes from 30 sites (NCAA athletic departments and US Department of Defense service academies), 4 of which participated in the Advanced Research Core, which included diffusion-weighted MRI (dMRI) data collection. We analyzed the dMRI data of 51 injuries of concussed athletes scanned within 48 h of injury. All athletes were cleared to return-to-play by the local medical staff following a standardized, graduated protocol. The primary outcome measure is days to clearance of unrestricted return-to-play. Injuries were divided into early (return-to-play < 28 days) and late (return-to-play >= 28 days) recovery based on the return-to-play clinical records. The late recovery group meets the standard definition of Persisting Post-Concussion Symptoms (PPCS). Data were processed using automated, state-of-the-art, rigorous methods for reproducible data processing using brainlife.io. All processed data derivatives are made available at https://brainlife.io/project/63b2ecb0daffe2c2407ee3c5/dataset. The microstructural properties of 47 major white matter tracts, 5 callosal, 15 subcortical, and 148 cortical structures were mapped. Fractional Anisotropy (FA) and Mean Diffusivity (MD) were estimated for each tract and structure. Correlation analysis and Receiver Operator Characteristic (ROC) analysis were then performed to assess the association between the microstructural properties and return-to-play. Finally, a Logistic Regression binary classifier (LR-BC) was used to classify the injuries between the two recovery groups. Results: The mean FA across all white matter volume was negatively correlated with return-to-play (r = -0.38, p = 0.00001). No significant association between mean MD and return-to-play was found, neither for FA nor MD for any other structure. The mean FA of 47 white matter tracts was negatively correlated with return-to-play (rμ = -0.27; rσ = 0.08; rmin = -0.1; rmax = -0.43). Across all tracts, a large mean ROC Area Under the Curve (AUCFA) of 0.71 ± 0.09 SD was found. The top classification performance of the LR-BC was AUC = 0.90 obtained using the 16 statistically significant white matter tracts. Discussion: Utilizing a free, open-source, and automated cloud-based neuroimaging pipeline and app (https://brainlife.io/docs/tutorial/using-clairvoy/), a prognostic model has been developed, which predicts athletes at risk for slow recovery (PPCS) with an AUC=0.90, balanced accuracy = 0.89, sensitivity = 1.0, and specificity = 0.79. The small number of participants in this study (51 injuries) is a significant limitation and supports the need for future large concussion dMRI studies and focused on recovery.
  • Loading...
    Thumbnail Image
    Item
    Estimated age of first exposure to American football and outcome from concussion
    (Wolters Kluwer, 2020-11-24) Caccese, Jaclyn B.; Houck, Zac; Kaminski, Thomas W.; Clugston, James R.; Iverson, Grant L.; Bryk, Kelsey N.; Oldham, Jessie R.; Pasquina, Paul F.; Broglio, Steven P.; McAllister, Thomas W.; McCrea, Michael; Reed Hoy, April Marie; Hazzard, Joseph B., Jr.; Kelly, Louise A.; Ortega, Justus D.; Port, Nicholas; Putukian, Margot; Langford, T. Dianne; Giza, Christopher C.; Goldman, Joshua T.; Benjamin, Holly J.; Schmidt, Julianne D.; Feigenbaum, Luis A.; Eckner, James T.; Mihalik, Jason P.; Dysart Miles, Jessica; Anderson, Scott; Master, Christina L.; Collins, Micky W.; Kontos, Anthony P.; Chrisman, Sara P.D.; Brooks, Alison; Jackson, Jonathan C.; McGinty, Gerald; Cameron, Kenneth L.; Susmarski, Adam; O'Donnell, Patrick G.; Duma, Stefan; Rowson, Steve; Miles, Christopher M.; Bullers, Christopher T.; Dykhuizen, Brian H.; Lintner, Laura; Buckley, Thomas A.; Psychiatry, School of Medicine
    Objective: To examine the association between estimated age at first exposure (eAFE) to American football and clinical measures throughout recovery following concussion. Methods: Participants were recruited across 30 colleges and universities as part of the National Collegiate Athletic Association (NCAA)-Department of Defense Concussion Assessment, Research and Education Consortium. There were 294 NCAA American football players (age 19 ± 1 years) evaluated 24-48 hours following concussion with valid baseline data and 327 (age 19 ± 1 years) evaluated at the time they were asymptomatic with valid baseline data. Participants sustained a medically diagnosed concussion between baseline testing and postconcussion assessments. Outcome measures included the number of days until asymptomatic, Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) composite scores, Balance Error Scoring System (BESS) total score, and Brief Symptom Inventory 18 (BSI-18) subscores. The eAFE was defined as participant's age at the time of assessment minus self-reported number of years playing football. Results: In unadjusted regression models, younger eAFE was associated with lower (worse) ImPACT Visual Motor Speed (R 2 = 0.031, p = 0.012) at 24-48 hours following injury and lower (better) BSI-18 Somatization subscores (R 2 = 0.014, p = 0.038) when the athletes were asymptomatic. The effect sizes were very small. The eAFE was not associated with the number of days until asymptomatic, other ImPACT composite scores, BESS total score, or other BSI-18 subscores. Conclusion: Earlier eAFE to American football was not associated with longer symptom recovery, worse balance, worse cognitive performance, or greater psychological distress following concussion. In these NCAA football players, longer duration of exposure to football during childhood and adolescence appears to be unrelated to clinical recovery following concussion.
  • Loading...
    Thumbnail Image
    Item
    Gene Expression Alterations in Peripheral Blood Following Sport-Related Concussion in a Prospective Cohort of Collegiate Athletes: A Concussion Assessment, Research and Education (CARE) Consortium Study
    (Springer Nature, 2024-04) Simpson, Edward; Reiter, Jill L.; Ren, Jie; Zhang, Zhiqi; Nudelman, Kelly N.; Riggen, Larry D., Jr.; Menser, Michael D.; Harezlak, Jaroslaw; Foroud, Tatiana M.; Saykin, Andrew J.; Brooks, Alison; Cameron, Kenneth L.; Duma, Stefan M.; McGinty, Gerald; Rowson, Steven; Svoboda, Steven J.; Broglio, Steven P.; McCrea, Michael A.; Pasquina, Paul F.; McAllister, Thomas W.; Liu, Yunlong; CARE Consortium Investigators; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Background Molecular-based approaches to understanding concussion pathophysiology provide complex biological information that can advance concussion research and identify potential diagnostic and/or prognostic biomarkers of injury. Objective The aim of this study was to identify gene expression changes in peripheral blood that are initiated following concussion and are relevant to concussion response and recovery. Methods We analyzed whole blood transcriptomes in a large cohort of concussed and control collegiate athletes who were participating in the multicenter prospective cohort Concussion Assessment, Research, and Education (CARE) Consortium study. Blood samples were collected from collegiate athletes at preseason (baseline), within 6 h of concussion injury, and at four additional prescribed time points spanning 24 h to 6 months post-injury. RNA sequencing was performed on samples from 230 concussed, 130 contact control, and 102 non-contact control athletes. Differential gene expression and deconvolution analysis were performed at each time point relative to baseline. Results Cytokine and immune response signaling pathways were activated immediately after concussion, but at later time points these pathways appeared to be suppressed relative to the contact control group. We also found that the proportion of neutrophils increased and natural killer cells decreased in the blood following concussion. Conclusions Transcriptome signatures in the blood reflect the known pathophysiology of concussion and may be useful for defining the immediate biological response and the time course for recovery. In addition, the identified immune response pathways and changes in immune cell type proportions following a concussion may inform future treatment strategies.
  • Loading...
    Thumbnail Image
    Item
    Mechanisms of Injury Leading to Concussions in Collegiate Soccer Players: A CARE Consortium Study
    (Sage, 2024) Jo, Jacob; Boltz, Adrian J.; Williams, Kristen L.; Pasquina, Paul F.; McAllister, Thomas W.; McCrea, Michael A.; Broglio, Steven P.; Zuckerman, Scott L.; Terry, Douglas P.; CARE Consortium Investigators; Arbogast, Kristy; Benjamin, Holly J.; Brooks, Alison; Cameron, Kenneth L.; Chrisman, Sara P. D.; Clugston, James R.; Collins, Micky; DiFiori, John; Eckner, James T.; Estevez, Carlos; Feigenbaum, Luis A.; Goldman, Joshua T.; Hoy, April; Kaminski, Thomas W.; Kelly, Louise A.; Kontos, Anthony P.; Langford, Dianne; Lintner, Laura J.; Master, Christina L.; McDevitt, Jane; McGinty, Gerald; Miles, Chris; Ortega, Justus; Port, Nicholas; Rowson, Steve; Schmidt, Julianne; Susmarski, Adam; Svoboda, Steven; Psychiatry, School of Medicine
    Background: Few previous studies have investigated how different injury mechanisms leading to sport-related concussion (SRC) in soccer may affect outcomes. Purpose: To describe injury mechanisms and evaluate injury mechanisms as predictors of symptom severity, return to play (RTP) initiation, and unrestricted RTP (URTP) in a cohort of collegiate soccer players. Study design: Cohort study; Level of evidence, 2. Methods: The Concussion Assessment, Research and Education (CARE) Consortium database was used. The mechanism of injury was categorized into head-to-ball, head-to-head, head-to-body, and head-to-ground/equipment. Baseline/acute injury characteristics-including Sports Concussion Assessment Tool-3 total symptom severity (TSS), loss of consciousness (LOC), and altered mental status (AMS); descriptive data; and recovery (RTP and URTP)-were compared. Multivariable regression and Weibull models were used to assess the predictive value of the mechanism of injury on TSS and RTP/URTP, respectively. Results: Among 391 soccer SRCs, 32.7% were attributed to a head-to-ball mechanism, 27.9% to a head-to-body mechanism, 21.7% to a head-to-head mechanism, and 17.6% to a head-to-ground/equipment mechanism. Event type was significantly associated with injury mechanism [χ2(3) = 63; P < .001), such that more head-to-ball concussions occurred in practice sessions (n = 92 [51.1%] vs n = 36 [17.1%]) and more head-to-head (n = 65 [30.8%] vs n = 20 [11.1]) and head-to-body (n = 76 [36%] vs n = 33 [18.3%]) concussions occurred in competition. The primary position was significantly associated with injury mechanism [χ2(3) = 24; P < .004], with goalkeepers having no SRCs from the head-to-head mechanism (n = 0 [0%]) and forward players having the least head-to-body mechanism (n = 15 [19.2%]). LOC was also associated with injury mechanism (P = .034), with LOC being most prevalent in head-to-ground/equipment. Finally, AMS was most prevalent in head-to-ball (n = 54 [34.2%]) and head-to-body (n = 48 [30.4%]) mechanisms [χ2(3) = 9; P = .029]. In our multivariable models, the mechanism was not a predictor of TSS or RTP; however, it was associated with URTP (P = .044), with head-to-equipment/ground injuries resulting in the shortest mean number of days (14 ± 9.1 days) to URTP and the head-to-ball mechanism the longest (18.6 ± 21.6 days). Conclusion: The mechanism of injury differed by event type and primary position, and LOC and AMS were different across mechanisms. Even though the mechanism of injury was not a significant predictor of acute symptom burden or time until RTP initiation, those with head-to-equipment/ground injuries spent the shortest time until URTP, and those with head-to-ball injuries had the longest time until URTP.
  • Loading...
    Thumbnail Image
    Item
    Plasma Biomarker Concentrations Associated With Return to Sport Following Sport-Related Concussion in Collegiate Athletes—A Concussion Assessment, Research, and Education (CARE) Consortium Study
    (American Medical Association, 2020-08-27) Pattinson, Cassandra L.; Meier, Timothy B.; Guedes, Vivian A.; Lai, Chen; Devoto, Christina; Haight, Thaddeus; Broglio, Steven P.; McAllister, Thomas; Giza, Christopher; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin; Mihalik, Jason; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; McCrea, Michael; Gill, Jessica M.; Investigators for the CARE Consortium; Psychiatry, School of Medicine
    Importance: Identifying plasma biomarkers associated with the amount of time an athlete may need before they return to sport (RTS) following a sport-related concussion (SRC) is important because it may help to improve the health and safety of athletes. Objective: To examine whether plasma biomarkers can differentiate collegiate athletes who RTS in less than 14 days or 14 days or more following SRC. Design, Setting, and Participants: This multicenter prospective diagnostic study, conducted by the National Collegiate Athletics Association–Department of Defense Concussion Assessment, Research, and Education Consortium, included 127 male and female athletes who had sustained an SRC while enrolled at 6 Concussion Assessment, Research, and Education Consortium Advanced Research Core sites as well as 2 partial–Advanced Research Core military service academies. Data were collected between February 2015 and May 2018. Athletes with SRC completed clinical testing and blood collection at preseason (baseline), postinjury (0-21 hours), 24 to 48 hours postinjury, time of symptom resolution, and 7 days after unrestricted RTS. Main Outcomes and Measures: A total of 3 plasma biomarkers (ie, total tau protein, glial fibrillary acidic protein [GFAP], and neurofilament light chain protein [Nf-L]) were measured using an ultrasensitive single molecule array technology and were included in the final analysis. RTS was examined between athletes who took less than 14 days vs those who took 14 days or more to RTS following SRC. Linear mixed models were used to identify significant interactions between period by RTS group. Area under the receiver operating characteristic curve analyses were conducted to examine whether these plasma biomarkers could discriminate between RTS groups. Results: The 127 participants had a mean (SD) age of 18.9 (1.3) years, and 97 (76.4%) were men; 65 (51.2%) took less than 14 days to RTS, and 62 (48.8%) took 14 days or more to RTS. Linear mixed models identified significant associations for both mean (SE) plasma total tau (24-48 hours postinjury, <14 days RTS vs ≥14 days RTS: −0.65 [0.12] pg/mL vs −0.14 [0.14] pg/mL; P = .008) and GFAP (postinjury, 14 days RTS vs ≥14 days RTS: 4.72 [0.12] pg/mL vs 4.39 [0.11] pg/mL; P = .04). Total tau at the time of symptom resolution had acceptable discrimination power (area under the receiver operating characteristic curve, 0.75; 95% CI, 0.63-0.86; P < .001). We also examined a combined plasma biomarker panel that incorporated Nf-L, GFAP, and total tau at each period to discriminate RTS groups. Although the analyses did reach significance at each time period when combined, results indicated that they were poor at distinguishing the groups (area under the receiver operating characteristic curve, <0.7). Conclusions and Relevance: The findings of this study suggest that measures of total tau and GFAP may identify athletes who will require more time to RTS. However, further research is needed to improve our ability to determine recovery following an SRC.
  • Loading...
    Thumbnail Image
    Item
    Plasma Biomarker Concentrations Associated With Return to Sport Following Sport-Related Concussion in Collegiate Athletes—A Concussion Assessment, Research, and Education (CARE) Consortium Study
    (American Medical Association, 2020-08-27) Pattinson, Cassandra L.; Meier, Timothy B.; Guedes, Vivian A.; Lai, Chen; Devoto, Christina; Haight, Thaddeus; Broglio, Steven P.; McAllister, Thomas; Giza, Christopher; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin; Mihalik, Jason; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; McCrea, Michael; Gill, Jessica M.; CARE Consortium Investigators; Psychiatry, School of Medicine
    Importance Identifying plasma biomarkers associated with the amount of time an athlete may need before they return to sport (RTS) following a sport-related concussion (SRC) is important because it may help to improve the health and safety of athletes. Objective To examine whether plasma biomarkers can differentiate collegiate athletes who RTS in less than 14 days or 14 days or more following SRC. Design, Setting, and Participants This multicenter prospective diagnostic study, conducted by the National Collegiate Athletics Association–Department of Defense Concussion Assessment, Research, and Education Consortium, included 127 male and female athletes who had sustained an SRC while enrolled at 6 Concussion Assessment, Research, and Education Consortium Advanced Research Core sites as well as 2 partial–Advanced Research Core military service academies. Data were collected between February 2015 and May 2018. Athletes with SRC completed clinical testing and blood collection at preseason (baseline), postinjury (0-21 hours), 24 to 48 hours postinjury, time of symptom resolution, and 7 days after unrestricted RTS. Main Outcomes and Measures A total of 3 plasma biomarkers (ie, total tau protein, glial fibrillary acidic protein [GFAP], and neurofilament light chain protein [Nf-L]) were measured using an ultrasensitive single molecule array technology and were included in the final analysis. RTS was examined between athletes who took less than 14 days vs those who took 14 days or more to RTS following SRC. Linear mixed models were used to identify significant interactions between period by RTS group. Area under the receiver operating characteristic curve analyses were conducted to examine whether these plasma biomarkers could discriminate between RTS groups. Results The 127 participants had a mean (SD) age of 18.9 (1.3) years, and 97 (76.4%) were men; 65 (51.2%) took less than 14 days to RTS, and 62 (48.8%) took 14 days or more to RTS. Linear mixed models identified significant associations for both mean (SE) plasma total tau (24-48 hours postinjury, <14 days RTS vs ≥14 days RTS: −0.65 [0.12] pg/mL vs −0.14 [0.14] pg/mL; P = .008) and GFAP (postinjury, 14 days RTS vs ≥14 days RTS: 4.72 [0.12] pg/mL vs 4.39 [0.11] pg/mL; P = .04). Total tau at the time of symptom resolution had acceptable discrimination power (area under the receiver operating characteristic curve, 0.75; 95% CI, 0.63-0.86; P < .001). We also examined a combined plasma biomarker panel that incorporated Nf-L, GFAP, and total tau at each period to discriminate RTS groups. Although the analyses did reach significance at each time period when combined, results indicated that they were poor at distinguishing the groups (area under the receiver operating characteristic curve, <0.7). Conclusions and Relevance The findings of this study suggest that measures of total tau and GFAP may identify athletes who will require more time to RTS. However, further research is needed to improve our ability to determine recovery following an SRC.
  • Loading...
    Thumbnail Image
    Item
    Plasma phosphorylated tau181 as a biomarker of mild traumatic brain injury: findings from THINC and NCAA-DoD CARE Consortium prospective cohorts
    (Frontiers Media, 2023-08-17) Devoto, Christina; Vorn, Rany; Mithani, Sara; Meier, Timothy B.; Lai, Chen; Broglio, Steven P.; McAllister, Thomas; Giza, Christopher C.; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth L.; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin; Mihalik, Jason P.; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; Turtzo, Christine; Latour, Lawrence; McCrea, Michael A.; Gill, Jessica M.; Psychiatry, School of Medicine
    Objective: The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods: This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results: Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion: These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University