- Browse by Author
Browsing by Author "Brody, Jennifer A."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies(Springer Nature, 2022) Li, Zilin; Li, Xihao; Zhou, Hufeng; Gaynor, Sheila M.; Selvaraj, Margaret Sunitha; Arapoglou, Theodore; Quick, Corbin; Liu, Yaowu; Chen, Han; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Auer, Paul L.; Bielak, Lawrence F.; Bis, Joshua C.; Blackwell, Thomas W.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Conomos, Matthew P.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Franceschini, Nora; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Lin, Bridget M.; Manichaikul, Ani; Manning, Alisa K.; Martin, Lisa W.; Mathias, Rasika A.; Meigs, James B.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Smith, Jennifer A.; Taylor, Kent D.; Taub, Margaret A.; Vasan, Ramachandran S.; Weeks, Daniel E.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Willer, Cristen J.; Natarajan, Pradeep; Peloso, Gina M.; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineLarge-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.Item Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing(Springer Nature, 2019-03) Kunkle, Brian W.; Grenier-Boley, Benjamin; Sims, Rebecca; Bis, Joshua C.; Damotte, Vincent; Naj, Adam C.; Boland, Anne; Vronskaya, Maria; van der Lee, Sven J.; Amlie-Wolf, Alexandre; Bellenguez, Céline; Frizatti, Aura; Chouraki, Vincent; Martin, Eden R.; Sleegers, Kristel; Badarinarayan, Nandini; Jakobsdottir, Johanna; Hamilton-Nelson, Kara L.; Moreno-Grau, Sonia; Olaso, Robert; Raybould, Rachel; Chen, Yuning; Kuzma, Amanda B.; Hiltunen, Mikko; Morgan, Taniesha; Ahmad, Shahzad; Vardarajan, Badri N.; Epelbaum, Jacques; Hoffmann, Per; Boada, Merce; Beecham, Gary W.; Garnier, Jean-Guillaume; Harold, Denise; Fitzpatrick, Annette L.; Valladares, Otto; Moutet, Marie-Laure; Gerrish, Amy; Smith, Albert V.; Qu, Liming; Bacq, Delphine; Denning, Nicola; Jian, Xueqiu; Zhao, Yi; Del Zompo, Maria; Fox, Nick C.; Choi, Seung-Hoan; Mateo, Ignacio; Hughes, Joseph T.; Adams, Hieab H.; Malamon, John; Sanchez-Garcia, Florentino; Patel, Yogen; Brody, Jennifer A.; Dombroski, Beth A.; Deniz Naranjo, Maria Candida; Daniilidou, Makrina; Eiriksdottir, Gudny; Mukherjee, Shubhabrata; Wallon, David; Uphill, James; Aspelund, Thor; Cantwell, Laura B.; Garzia, Fabienne; Galimberti, Daniela; Hofer, Edith; Butkiewicz, Mariusz; Fin, Bertrand; Scarpini, Elio; Sarnowski, Chloe; Bush, Will S.; Meslage, Stéphane; Kornhuber, Johannes; White, Charles C.; Song, Yuenjoo; Barber, Robert C.; Engelborghs, Sebastiaan; Sordon, Sabrina; Voijnovic, Dina; Adams, Perrie M.; Vandenberghe, Rik; Mayhaus, Manuel; Cupples, L. Adrienne; Albert, Marilyn S.; De Deyn, Peter P.; Gu, Wei; Himali, Jayanadra J.; Beekly, Duane; Squassina, Alessio; Hartmann, Annette M.; Orellana, Adelina; Blacker, Deborah; Rodriguez-Rodriguez, Eloy; Lovestone, Simon; Garcia, Melissa E.; Doody, Rachelle S.; Munoz-Fernadez, Carmen; Sussams, Rebecca; Lin, Honghuang; Fairchild, Thomas J.; Benit, Yolanda A.; Holmes, Clive; Karamujić-Čomić, Hata; Frosch, Matthew P.; Thonberg, Hakan; Maier, Wolfgang; Roshchupkin, Gennady; Ghetti, Bernardino; Giedraitis, Vilmantas; Kawalia, Amit; Li, Shuo; Huebinger, Ryan M.; Kilander, Lena; Moebus, Susanne; Hernández, Isabel; Kamboh, M. Ilyas; Brundin, RoseMarie; Turton, James; Yang, Qiong; Katz, Mindy J.; Concari, Letizia; Lord, Jenny; Beiser, Alexa S.; Keene, C. Dirk; Helisalmi, Seppo; Kloszewska, Iwona; Kukull, Walter A.; Koivisto, Anne Maria; Lynch, Aoibhinn; Tarraga, Lluís; Larson, Eric B.; Haapasalo, Annakaisa; Lawlor, Brian; Mosley, Thomas H.; Lipton, Richard B.; Solfrizzi, Vincenzo; Gill, Michael; Longstreth, W. T., Jr.; Montine, Thomas J.; Frisardi, Vincenza; Diez-Fairen, Monica; Rivadeneira, Fernando; Petersen, Ronald C.; Deramecourt, Vincent; Alvarez, Ignacio; Salani, Francesca; Ciaramella, Antonio; Boerwinkle, Eric; Reiman, Eric M.; Fievet, Nathalie; Rotter, Jerome I.; Reisch, Joan S.; Hanon, Olivier; Cupidi, Chiara; Uitterlinden, A. G. Andre; Royall, Donald R.; Dufouil, Carole; Maletta, Raffaele Giovanni; de Rojas, Itziar; Sano, Mary; Brice, Alexis; Cecchetti, Roberta; St. George-Hyslop, Peter; Ritchie, Karen; Tsolaki, Magda; Tsuang, Debby W.; Dubois, Bruno; Craig, David; Wu, Chuang-Kuo; Soininen, Hilkka; Avramidou, Despoina; Albin, Roger L.; Fratiglioni, Laura; Germanou, Antonia; Apostolova, Liana G.; Keller, Lina; Koutroumani, Maria; Arnold, Steven E.; Panza, Francesco; Gkatzima, Olymbia; Asthana, Sanjay; Hannequin, Didier; Whitehead, Patrice; Atwood, Craig S.; Caffarra, Paolo; Hampel, Harald; Quintela, Inés; Carracedo, Ángel; Lannfelt, Lars; Rubinsztein, David C.; Barnes, Lisa L.; Pasquier, Florence; Frölich, Lutz; Barral, Sandra; McGuinness, Bernadette; Beach, Thomas G .; Johnston, Janet A.; Becker, James T.; Passmore, Peter; Bigio, Eileen H.; Schott, Jonathan M.; Bird, Thomas D.; Warren, Jason D.; Boeve, Bradley F.; Lupton, Michelle K.; Bowen, James D.; Proitsi, Petra; Boxer, Adam; Powell, John F.; Burke, James R.; Kauwe, John S.K.; Burns, Jeffrey M.; Mancuso, Michelangelo; Buxbaum, Joseph D.; Bonuccelli, Ubaldo; Cairns, Nigel J.; McQuillin, Andrew; Cao, Chuanhai; Livingston, Gill; Carlson, Chris S.; Bass, Nicholas J.; Carlsson, Cynthia M.; Hardy, John; Carney, Regina M.; Bras, Jose; Carrasquillo, Minerva M.; Guerreiro, Rita; Allen, Mariet; Chui, Helena C.; Fisher, Elizabeth; Masullo, Carlo; Crocco, Elizabeth A.; DeCarli, Charles; Bisceglio, Gina; Dick, Malcolm; Ma, Li; Duara, Ranjan; Graff-Radford, Neill R.; Evans, Denis A.; Hodges, Angela; Faber, Kelley M.; Scherer, Martin; Fallon, Kenneth B.; Riemenschneider, Matthias; Fardo, David W.; Heun, Reinhard; Farlow, Martin R.; Kölsch, Heike; Ferris, Steven; Leber, Markus; Foroud, Tatiana M.; Heuser, Isabella; Galasko, Douglas R.; Giegling, Ina; Gearing, Marla; Hüll, Michael; Geschwind, Daniel H.; Gilbert, John R.; Morris, John; Green, Robert C.; Mayo, Kevin; Growdon, John H.; Feulner, Thomas; Hamilton, Ronald L.; Harrell, Lindy E.; Drichel, Dmitriy; Honig, Lawrence S.; Cushion, Thomas D.; Huentelman, Matthew J.; Hollingworth, Paul; Hulette, Christine M.; Hyman, Bradley T.; Marshall, Rachel; Jarvik, Gail P.; Meggy, Alun; Abner, Erin; Menzies, Georgina E.; Jin, Lee-Way; Leonenko, Ganna; Real, Luis M.; Jun, Gyungah R.; Baldwin, Clinton T.; Grozeva, Detelina; Karydas, Anna; Russo, Giancarlo; Kaye, Jeffrey A.; Kim, Ronald; Jessen, Frank; Kowall, Neil W.; Vellas, Bruno; Kramer, Joel H.; Vardy, Emma; LaFerla, Frank M.; Jöckel, Karl-Heinz; Lah, James J.; Dichgans, Martin; Leverenz, James B.; Mann, David; Levey, Allan I.; Pickering-Brown, Stuart; Lieberman, Andrew P.; Klopp, Norman; Lunetta, Kathryn L.; Wichmann, H-Erich; Lyketsos, Constantine G.; Morgan, Kevin; Marson, Daniel C.; Brown, Kristelle; Martiniuk, Frank; Medway, Christopher; Mash, Deborah C.; Nöthen, Markus M.; Masliah, Eliezer; Hooper, Nigel M.; McCormick, Wayne C.; Daniele, Antonio; McCurry, Susan M.; Bayer, Anthony; McDavid, Andrew N.; Gallacher, John; McKee, Ann C.; van den Bussche, Hendrik; Mesulam, Marsel; Brayne, Carol; Miller, Bruce L.; Riedel-Heller, Steffi; Miller, Carol A.; Miller, Joshua W.; Al-Chalabi, Ammar; Morris, John C.; Shaw, Christopher E.; Myers, Amanda J.; Wiltfang, Jens; O'Bryant, Sid; Olichney, John M.; Alvarez, Victoria; Parisi, Joseph E.; Singleton, Andrew B.; Paulson, Henry L.; Collinge, John; Perry, William R.; Mead, Simon; Peskind, Elaine; Cribbs, David H.; Rossor, Martin; Pierce, Aimee; Ryan, Natalie S.; Poon, Wayne W.; Nacmias, Benedetta; Potter, Huntington; Sorbi, Sandro; Quinn, Joseph F.; Sacchinelli, Eleonora; Raj, Ashok; Spalletta, Gianfranco; Raskind, Murray; Caltagirone, Carlo; Bossù, Paola; Orfei, Maria Donata; Reisberg, Barry; Clarke, Robert; Reitz, Christiane; Smith, A. David; Ringman, John M.; Warden, Donald; Roberson, Erik D.; Wilcock, Gordon; Rogaeva, Ekaterina; Bruni, Amalia Cecilia; Rosen, Howard J.; Gallo, Maura; Rosenberg, R.N.; Ben-Shlomo, Yoav; Sager, Mark A.; Mecocci, Patrizia; Saykin, Andrew J.; Pastor, Pau; Cuccaro, Michael L.; Vance, Jeffery M.; Schneider, Julie A.; Schneider, Lori S.; Slifer, Susan; Seeley, William W.; Smith, Amanda G.; Sonnen, Joshua A.; Spina, Salvatore; Stern, Robert A.; Swerdlow, Russell H.; Tang, Mitchell; Tanzi, Rudolph E.; Trojanowski, John Q.; Troncoso, Juan C.; Van Deerlin, Vivianna M.; Van Eldik, Linda J.; Vinters, Harry V.; Vonsattel, Jean Paul; Weintraub, Sandra; Welsh-Bohmer, Kathleen A.; Wilhelmsen, Kirk C.; Williamson, Jennifer; Wingo, Thomas S.; Woltjer, Randall L.; Wright, Clinton B.; Yu, Chang-En; Yu, Lei; Saba, Yasaman; Pilotto, Alberto; Bullido, Maria J.; Peters, Oliver; Crane, Paul K.; Bennett, David; Bosco, Paola; Coto, Eliecer; Boccardi, Virginia; De Jager, Phil L.; Lleo, Alberto; Warner, Nick; Lopez, Oscar L.; Ingelsson, Martin; Deloukas, Panagiotis; Cruchaga, Carlos; Graff, Caroline; Gwilliam, Rhian; Fornage, Myriam; Goate, Alison M.; Sanchez-Juan, Pascual; Kehoe, Patrick G.; Amin, Najaf; Ertekin-Taner, Nilifur; Berr, Claudine; Debette, Stéphanie; Love, Seth; Launer, Lenore J.; Younkin, Steven G.; Dartigues, Jean-Francois; Corcoran, Chris; Ikram, M. Arfan; Dickson, Dennis W.; Nicolas, Gael; Campion, Dominique; Tschanz, JoAnn; Schmidt, Helena; Hakonarson, Hakon; Clarimon, Jordi; Munger, Ron; Schmidt, Reinhold; Farrer, Lindsay A.; Van Broeckhoven, Christine; O'Donovan, Michael C.; DeStefano, Anita L.; Jones, Lesley; Haines, Jonathan L.; Deleuze, Jean-Francois; Owen, Michael J.; Gudnason, Vilmundur; Mayeux, Richard; Escott-Price, Valentina; Psaty, Bruce M.; Ramirez, Alfredo; Wang, Li-San; Ruiz, Agustin; van Duijn, Cornelia M.; Holmans, Peter A.; Seshadri, Sudha; Williams, Julie; Amouyel, Phillippe; Schellenberg, Gerard D.; Lambert, Jean-Charles; Pericak-Vance, Margaret A.; Pathology and Laboratory Medicine, School of MedicineRisk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10-7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.Item Genome sequencing unveils a regulatory landscape of platelet reactivity(Springer Nature, 2021-06-15) Keramati, Ali R.; Chen, Ming-Huei; Rodriguez, Benjamin A. T.; Yanek, Lisa R.; Bhan, Arunoday; Gaynor, Brady J.; Ryan, Kathleen; Brody, Jennifer A.; Zhong, Xue; Wei, Qiang; NHLBI Trans-Omics for Precision (TOPMed) Consortium; Kammers, Kai; Kanchan, Kanika; Iyer, Kruthika; Kowalski, Madeline H.; Pitsillides, Achilleas N.; Cupples, L. Adrienne; Li, Bingshan; Schlaeger, Thorsten M.; Shuldiner, Alan R.; O’Connell, Jeffrey R.; Ruczinski, Ingo; Mitchell, Braxton D.; Faraday, Nauder; Taub, Margaret A.; Becker, Lewis C.; Lewis, Joshua P.; Mathias, Rasika A.; Johnson, Andrew D.; Medicine, School of MedicinePlatelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.Item Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program(Elsevier, 2019-09-26) Sarnowski, Chloé; Leong, Aaron; Raffield, Laura M.; Wu, Peitao; de Vries, Paul S.; DiCorpo, Daniel; Guo, Xiuqing; Xu, Huichun; Liu, Yongmei; Zheng, Xiuwen; Hu, Yao; Brody, Jennifer A.; Goodarzi, Mark O.; Hidalgo, Bertha A.; Highland, Heather M.; Jain, Deepti; Liu, Ching-Ti; Naik, Rakhi P.; O’Connell, Jeffrey R.; Perry, James A.; Porneala, Bianca C.; Selvin, Elizabeth; Wessel, Jennifer; Psaty, Bruce M.; Curran, Joanne E.; Peralta, Juan M.; Blangero, John; Kooperberg, Charles; Mathias, Rasika; Johnson, Andrew D.; Reiner, Alexander P.; Mitchell, Braxton D.; Cupples, L. Adrienne; Vasan, Ramachandran S.; Correa, Adolfo; Morrison, Alanna C.; Boerwinkle, Eric; Rotter, Jerome I.; Rich, Stephen S.; Manning, Alisa K.; Dupuis, Josée; Meigs, James B.; TOPMed Diabetes Working Group; TOPMed Hematology Working Group; TOPMed Hemostasis Working Group; National Heart, Lung, and Blood Institute TOPMed Consortium; Epidemiology, School of Public HealthHemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (−0.88% in hemizygous males, −0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; −0.98% in hemizygous males, −0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.Item Investigating Gene-Diet Interactions Impacting the Association Between Macronutrient Intake and Glycemic Traits(American Diabetes Association, 2023) Westerman, Kenneth E.; Walker, Maura E.; Gaynor, Sheila M.; Wessel, Jennifer; DiCorpo, Daniel; Ma, Jiantao; Alonso, Alvaro; Aslibekyan, Stella; Baldridge, Abigail S.; Bertoni, Alain G.; Biggs, Mary L.; Brody, Jennifer A.; Chen, Yii-Der Ida; Dupuis, Joseé; Goodarzi, Mark O.; Guo, Xiuqing; Hasbani, Natalie R.; Heath, Adam; Hidalgo, Bertha; Irvin, Marguerite R.; Johnson, W. Craig; Kalyani, Rita R.; Lange, Leslie; Lemaitre, Rozenn N.; Liu, Ching-Ti; Liu, Simin; Moon, Jee-Young; Nassir, Rami; Pankow, James S.; Pettinger, Mary; Raffield, Laura M.; Rasmussen-Torvik, Laura J.; Selvin, Elizabeth; Senn, Mackenzie K.; Shadyab, Aladdin H.; Smith, Albert V.; Smith, Nicholas L.; Steffen, Lyn; Talegakwar, Sameera; Taylor, Kent D.; de Vries, Paul S.; Wilson, James G.; Wood, Alexis C.; Yanek, Lisa R.; Yao, Jie; Zheng, Yinan; Boerwinkle, Eric; Morrison, Alanna C.; Fornage, Miriam; Russell, Tracy P.; Psaty, Bruce M.; Levy, Daniel; Heard-Costa, Nancy L.; Ramachandran, Vasan S.; Mathias, Rasika A.; Arnett, Donna K.; Kaplan, Robert; North, Kari E.; Correa, Adolfo; Carson, April; Rotter, Jerome I.; Rich, Stephen S.; Manson, JoAnn E.; Reiner, Alexander P.; Kooperberg, Charles; Florez, Jose C.; Meigs, James B.; Merino, Jordi; Tobias, Deirdre K.; Chen, Han; Manning, Alisa K.; Epidemiology, Richard M. Fairbanks School of Public HealthFew studies have demonstrated reproducible gene-diet interactions (GDIs) impacting metabolic disease risk factors, likely due in part to measurement error in dietary intake estimation and insufficient capture of rare genetic variation. We aimed to identify GDIs across the genetic frequency spectrum impacting the macronutrient-glycemia relationship in genetically and culturally diverse cohorts. We analyzed 33,187 participants free of diabetes from 10 National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program cohorts with whole-genome sequencing, self-reported diet, and glycemic trait data. We fit cohort-specific, multivariable-adjusted linear mixed models for the effect of diet, modeled as an isocaloric substitution of carbohydrate for fat, and its interactions with common and rare variants genome-wide. In main effect meta-analyses, participants consuming more carbohydrate had modestly lower glycemic trait values (e.g., for glycated hemoglobin [HbA1c], -0.013% HbA1c/250 kcal substitution). In GDI meta-analyses, a common African ancestry-enriched variant (rs79762542) reached study-wide significance and replicated in the UK Biobank cohort, indicating a negative carbohydrate-HbA1c association among major allele homozygotes only. Simulations revealed that >150,000 samples may be necessary to identify similar macronutrient GDIs under realistic assumptions about effect size and measurement error. These results generate hypotheses for further exploration of modifiable metabolic disease risk in additional cohorts with African ancestry. Article highlights: We aimed to identify genetic modifiers of the dietary macronutrient-glycemia relationship using whole-genome sequence data from 10 Trans-Omics for Precision Medicine program cohorts. Substitution models indicated a modest reduction in glycemia associated with an increase in dietary carbohydrate at the expense of fat. Genome-wide interaction analysis identified one African ancestry-enriched variant near the FRAS1 gene that may interact with macronutrient intake to influence hemoglobin A1c. Simulation-based power calculations accounting for measurement error suggested that substantially larger sample sizes may be necessary to discover further gene-macronutrient interactions.Item Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair(SpringerNature, 2015-11) Day, Felix R.; Ruth, Katherine S.; Thompson, Deborah J.; Lunetta, Kathryn L.; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K.; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D.; Elks, Cathy E.; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A.; Franke, Lude L.; Huffman, Jennifer E.; Keller, Margaux F.; McArdle, Patrick F.; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M.; Schick, Ursula M.; Smith, Jennifer A.; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V.; Tanaka, Toshiko; Abecasis, Goncalo; Andrulis, Irene L.; Anton-Culver, Hoda; Antoniou, Antonis C.; Arndt, Volker; Arnold, Alice M.; Barbieri, Caterina; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J.; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Boutin, Thibaud S.; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J.; Chapman, J. Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J.; Coviello, Andrea D.; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W.; Dennis, Joe; Devilee, Peter; Dörk, Thilo; dos-Santos-Silva, Isabel; Dunning, Alison M.; Eicher, John D.; Fasching, Peter A.; Faul, Jessica D.; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E.; García-Closas, Montserrat; Giles, Graham G.; Girotto, Giorgia G.; Goldberg, Mark S.; González-Neira, Anna; Goodarzi, Mark O.; Grove, Megan L.; Gudbjartsson, Daniel F.; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Henderson, Brian E.; Hocking, Lynne J.; Hofman, Albert; Homuth, Georg; Hooning, Maartje J.; Hopper, John L.; Hu, Frank B.; Huang, Jinyan; Humphreys, Keith; Hunter, David J.; Jakubowska, Anna; Jones, Samuel E.; Kabisch, Maria; Karasia, David; Knight, Julia A.; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian’an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G.; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L.; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Ben M.; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B.; Nordestgaard, Børge G.; Olson, Janet E.; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D.P.; Pirastu, Nicola N.; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M.; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J.; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Anja, Daniela; Sala, Cinzia F.; Sanna, Serena; Sawyer, Elinor J.; Schlessinger, David; Schmidt, Marjanka K.; Schmidt, Frank; Schmutzler, Rita K.; Schoemaker, Minouk J.; Scott, Robert A.; Seynaeve, Caroline M.; Simard, Jacques; Sorice, Rossella; Southey, Melissa C.; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D.; Thorsteinsdottir, Unnur; Toland, Amanda E.; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T.; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F.; Winqvist, Robert; Wolffenbuttel, Bruce B.H.R.; Wright, Alan F.; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I.; Buring, Julie E.; Ferrucci, Luigi; Montgomery, Grant W.; Gudnason, Vilmundur; Spector, Tim D.; van Duijn, Cornelia M; Alizadeh, Behrooz Z.; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F.; Gasparini, Paolo P.; Gieger, Christian; Harris, Tamara B.; Hayward, Caroline; Kardia, Sharon L.R.; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C.; Reiner, Alex P.; Ridker, Paul M.; Rotter, Jerome I.; Toniolo, Daniela; Uitterlinden, André G.; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J.; Weir, David R.; Yerges-Armstrong, Laura M.; Price, Alkes L.; Stefansson, Kari; Visser, Jenny A.; Ong, Ken K.; Chang-Claude, Jenny; Murabito, Joanne M.; Perry, John R.B.; Murray, Anna; Department of Epidemiology, Richard M. Fairbanks School of Public HealthMenopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.Item Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility(Nature Publishing Group, 2015-01-29) Wessel, Jennifer; Chu, Audrey Y.; Willems, Sara M.; Wang, Shuai; Yaghootkar, Hanieh; Brody, Jennifer A.; Dauriz, Marco; Hivert, Marie-France; Raghavan, Sridharan; Lipovich, Leonard; Hidalgo, Bertha; Fox, Keolu; Huffman, Jennifer E.; An, Ping; Lu, Yingchang; Rasmussen-Torvik, Laura J.; Grarup, Niels; Ehm, Margaret G.; Li, Li; Baldridge, Abigail S.; Stančáková, Alena; Abrol, Ravinder; Besse, Céline; Boland, Anne; Bork-Jensen, Jette; Fornage, Myriam; Freitag, Daniel F.; Garcia, Melissa E.; Guo, Xiuqing; Hara, Kazuo; Isaacs, Aaron; Jakobsdottir, Johanna; Lange, Leslie A.; Layton, Jill C.; Li, Man; Hua Zhao, Jing; Meidtner, Karina; Morrison, Alanna C.; Nalls, Mike A.; Peters, Marjolein J.; Sabater-Lleal, Maria; Schurmann, Claudia; Silveira, Angela; Smith, Albert V.; Southam, Lorraine; Stoiber, Marcus H.; Strawbridge, Rona J.; Taylor, Kent D.; Varga, Tibor V.; Allin, Kristine H.; Amin, Najaf; Aponte, Jennifer L.; Aung, Tin; Barbieri, Caterina; Bihlmeyer, Nathan A.; Boehnke, Michael; Bombieri, Cristina; Bowden, Donald W.; Burns, Sean M.; Chen, Yuning; Chen, Yii-DerI; Cheng, Ching-Yu; Correa, Adolfo; Czajkowski, Jacek; Dehghan, Abbas; Ehret, Georg B.; Eiriksdottir, Gudny; Escher, Stefan A.; Farmaki, Aliki-Eleni; Frånberg, Mattias; Gambaro, Giovanni; Giulianini, Franco; Goddard, William A.; Goel, Anuj; Gottesman, Omri; Grove, Megan L.; Gustafsson, Stefan; Hai, Yang; Hallmans, Göran; Heo, Jiyoung; Hoffmann, Per; Ikram, Mohammad K.; Jensen, Richard A.; Jørgensen, Marit E.; Jørgensen, Torben; Karaleftheri, Maria; Khor, Chiea C.; Kirkpatrick, Andrea; Kraja, Aldi T.; Kuusisto, Johanna; Lange, Ethan M.; Lee, I. T.; Lee, Wen-Jane; Leong, Aaron; Liao, Jiemin; Liu, Chunyu; Liu, Yongmei; Lindgren, Cecilia M.; Linneberg, Allan; Malerba, Giovanni; Mamakou, Vasiliki; Marouli, Eirini; Maruthur, Nisa M.; Matchan, Angela; McKean-Cowdin, Roberta; McLeod, Olga; Metcalf, Ginger A.; Mohlke, Karen L.; Muzny, Donna M.; Ntalla, Ioanna; Palmer, Nicholette D.; Pasko, Dorota; Peter, Andreas; Rayner, Nigel W.; Renström, Frida; Rice, Ken; Sala, Cinzia F.; Sennblad, Bengt; Serafetinidis, Ioannis; Smith, Jennifer A.; Soranzo, Nicole; Speliotes, Elizabeth K.; Stahl, Eli A.; Stirrups, Kathleen; Tentolouris, Nikos; Thanopoulou, Anastasia; Torres, Mina; Traglia, Michela; Tsafantakis, Emmanouil; Javad, Sundas; Yanek, Lisa R.; Zengini, Eleni; Becker, Diane M.; Bis, Joshua C.; Brown, James B.; Adrienne Cupples, L.; Hansen, Torben; Ingelsson, Erik; Karter, Andrew J.; Lorenzo, Carlos; Mathias, Rasika A.; Norris, Jill M.; Peloso, Gina M.; Sheu, Wayne H.-H.; Toniolo, Daniela; Vaidya, Dhananjay; Varma, Rohit; Wagenknecht, Lynne E.; Boeing, Heiner; Bottinger, Erwin P.; Dedoussis, George; Deloukas, Panos; Ferrannini, Ele; Franco, Oscar H.; Franks, Paul W.; Gibbs, Richard A.; Gudnason, Vilmundur; Hamsten, Anders; Harris, Tamara B.; Hattersley, Andrew T.; Hayward, Caroline; Hofman, Albert; Jansson, Jan-Håkan; Langenberg, Claudia; Launer, Lenore J.; Levy, Daniel; Oostra, Ben A.; O'Donnell, Christopher J.; O'Rahilly, Stephen; Padmanabhan, Sandosh; Pankow, James S.; Polasek, Ozren; Province, Michael A.; Rich, Stephen S.; Ridker, Paul M.; Rudan, Igor; Schulze, Matthias B.; Smith, Blair H.; Uitterlinden, André G.; Walker, Mark; Watkins, Hugh; Wong, Tien Y.; Zeggini, Eleftheria; Laakso, Markku; Borecki, Ingrid B.; Chasman, Daniel I.; Pedersen, Oluf; Psaty, Bruce M.; Shyong Tai, E.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Waterworth, Dawn M.; Boerwinkle, Eric; Linda Kao, W. H.; Florez, Jose C.; Loos, Ruth J. F.; Wilson, James G.; Frayling, Timothy M.; Siscovick, David S.; Dupuis, Josée; Rotter, Jerome I.; Meigs, James B.; Scott, Robert A.; Goodarzi, Mark O.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthFasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.Item Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies(Springer Nature, 2023) Li, Xihao; Quick, Corbin; Zhou, Hufeng; Gaynor, Sheila M.; Liu, Yaowu; Chen, Han; Selvaraj, Margaret Sunitha; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Bielak, Lawrence F.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Haessler, Jeffrey; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Manichaikul, Ani; Martin, Lisa W.; McGarvey, Stephen T.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Sitlani, Colleen M.; Smith, Jennifer A.; Taylor, Kent D.; Vasan, Ramachandran S.; Willer, Cristen J.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Natarajan, Pradeep; Peloso, Gina M.; Li, Zilin; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineMeta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.Item Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program(Springer Nature, 2021) Taliun, Daniel; Harris, Daniel N.; Kessler, Michael D.; Carlson, Jedidiah; Szpiech, Zachary A.; Torres, Raul; Gagliano Taliun, Sarah A.; Corvelo, André; Gogarten, Stephanie M.; Kang, Hyun Min; Pitsillides, Achilleas N.; LeFaive, Jonathon; Lee, Seung-Been; Tian, Xiaowen; Browning, Brian L.; Das, Sayantan; Emde, Anne-Katrin; Clarke, Wayne E.; Loesch, Douglas P.; Shetty, Amol C.; Blackwell, Thomas W.; Smith, Albert V.; Wong, Quenna; Liu, Xiaoming; Conomos, Matthew P.; Bobo, Dean M.; Aguet, François; Albert, Christine; Alonso, Alvaro; Ardlie, Kristin G.; Arking, Dan E.; Aslibekyan, Stella; Auer, Paul L.; Barnard, John; Barr, R. Graham; Barwick, Lucas; Becker, Lewis C.; Beer, Rebecca L.; Benjamin, Emelia J.; Bielak, Lawrence F.; Blangero, John; Boehnke, Michael; Bowden, Donald W.; Brody, Jennifer A.; Burchard, Esteban G.; Cade, Brian E.; Casella, James F.; Chalazan, Brandon; Chasman, Daniel I.; Chen, Yii-Der Ida; Cho, Michael H.; Choi, Seung Hoan; Chung, Mina K.; Clish, Clary B.; Correa, Adolfo; Curran, Joanne E.; Custer, Brian; Darbar, Dawood; Daya, Michelle; de Andrade, Mariza; DeMeo, Dawn L.; Dutcher, Susan K.; Ellinor, Patrick T.; Emery, Leslie S.; Eng, Celeste; Fatkin, Diane; Fingerlin, Tasha; Forer, Lukas; Fornage, Myriam; Franceschini, Nora; Fuchsberger, Christian; Fullerton, Stephanie M.; Germer, Soren; Gladwin, Mark T.; Gottlieb, Daniel J.; Guo, Xiuqing; Hall, Michael E.; He, Jiang; Heard-Costa, Nancy L.; Heckbert, Susan R.; Irvin, Marguerite R.; Johnsen, Jill M.; Johnson, Andrew D.; Kaplan, Robert; Kardia, Sharon L. R.; Kelly, Tanika; Kelly, Shannon; Kenny, Eimear E.; Kiel, Douglas P.; Klemmer, Robert; Konkle, Barbara A.; Kooperberg, Charles; Köttgen, Anna; Lange, Leslie A.; Lasky-Su, Jessica; Levy, Daniel; Lin, Xihong; Lin, Keng-Han; Liu, Chunyu; Loos, Ruth J. F.; Garman, Lori; Gerszten, Robert; Lubitz, Steven A.; Lunetta, Kathryn L.; Mak, Angel C. Y.; Manichaikul, Ani; Manning, Alisa K.; Mathias, Rasika A.; McManus, David D.; McGarvey, Stephen T.; Meigs, James B.; Meyers, Deborah A.; Mikulla, Julie L.; Minear, Mollie A.; Mitchell, Braxton D.; Mohanty, Sanghamitra; Montasser, May E.; Montgomery, Courtney; Morrison, Alanna C.; Murabito, Joanne M.; Natale, Andrea; Natarajan, Pradeep; Nelson, Sarah C.; North, Kari E.; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Pankratz, Nathan; Peloso, Gina M.; Peyser, Patricia A.; Pleiness, Jacob; Post, Wendy S.; Psaty, Bruce M.; Rao, D. C.; Redline, Susan; Reiner, Alexander P.; Roden, Dan; Rotter, Jerome I.; Ruczinski, Ingo; Sarnowski, Chloé; Schoenherr, Sebastian; Schwartz, David A.; Seo, Jeong-Sun; Seshadri, Sudha; Sheehan, Vivien A.; Sheu, Wayne H.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Smith, Jennifer A.; Sotoodehnia, Nona; Stilp, Adrienne M.; Tang, Weihong; Taylor, Kent D.; Telen, Marilyn; Thornton, Timothy A.; Tracy, Russell P.; Van Den Berg, David J.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Vrieze, Scott; Weeks, Daniel E.; Weir, Bruce S.; Weiss, Scott T.; Weng, Lu-Chen; Willer, Cristen J.; Zhang, Yingze; Zhao, Xutong; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Boerwinkle, Eric; Gabriel, Stacey; Gibbs, Richard; Rice, Kenneth M.; Rich, Stephen S.; Silverman, Edwin K.; Qasba, Pankaj; Gan, Weiniu; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Papanicolaou, George J.; Nickerson, Deborah A.; Browning, Sharon R.; Zody, Michael C.; Zöllner, Sebastian; Wilson, James G.; Cupples, L. Adrienne; Laurie, Cathy C.; Jaquish, Cashell E.; Hernandez, Ryan D.; O'Connor, Timothy D.; Abecasis, Gonçalo R.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.Item Variant-specific inflation factors for assessing population stratification at the phenotypic variance level(Springer Nature, 2021-06-09) Sofer, Tamar; Zheng, Xiuwen; Laurie, Cecelia A.; Gogarten, Stephanie M.; Brody, Jennifer A.; Conomos, Matthew P.; Bis, Joshua C.; Thornton, Timothy A.; Szpiro, Adam; O’Connell, Jeffrey R.; Lange, Ethan M.; Gao, Yan; Cupples, L. Adrienne; Psaty, Bruce M.; NHLBI Trans- Omics for Precision Medicine (TOPMed) Consortium; Rice, Kenneth M.; Medicine, School of MedicineIn modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term ‘variance stratification’. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.