ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Broderick, Joseph"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Collagen COL22A1 maintains vascular stability and mutations in COL22A1 are potentially associated with intracranial aneurysms
    (The Company of Biologists, 2018-12-12) Ton, Quynh V.; Leino, Daniel; Mowery, Sarah A.; Bredemeier, Nina O.; Lafontant, Pascal J.; Lubert, Allison; Gurung, Suman; Farlow, Janice L.; Foroud, Tatiana M.; Broderick, Joseph; Sumanas, Saulius; Medical and Molecular Genetics, School of Medicine
    Collagen XXII (COL22A1) is a quantitatively minor collagen, which belongs to the family of fibril-associated collagens with interrupted triple helices. Its biological function has been poorly understood. Here, we used a genome-editing approach to generate a loss-of-function mutant in zebrafish col22a1 Homozygous mutant adults exhibit increased incidence of intracranial hemorrhages, which become more prominent with age and after cardiovascular stress. Homozygous col22a1 mutant embryos show higher sensitivity to cardiovascular stress and increased vascular permeability, resulting in a greater percentage of embryos with intracranial hemorrhages. Mutant embryos also exhibit dilations and irregular structure of cranial vessels. To test whether COL22A1 is associated with vascular disease in humans, we analyzed data from a previous study that performed whole-exome sequencing of 45 individuals from seven families with intracranial aneurysms. The rs142175725 single-nucleotide polymorphism was identified, which segregated with the phenotype in all four affected individuals in one of the families, and affects a highly conserved E736 residue in COL22A1 protein, resulting in E736D substitution. Overexpression of human wild-type COL22A1, but not the E736D variant, partially rescued the col22a1 loss-of-function mutant phenotype in zebrafish embryos. Our data further suggest that the E736D mutation interferes with COL22A1 protein secretion, potentially leading to endoplasmic reticulum stress. Altogether, these results argue that COL22A1 is required to maintain vascular integrity. These data further suggest that mutations in COL22A1 could be one of the risk factors for intracranial aneurysms in humans.
  • Loading...
    Thumbnail Image
    Item
    Exome-chip association analysis of intracranial aneurysms
    (American Academy of Neurology, 2020-02-04) van 't Hof, Femke N.G.; Lai, Dongbing; van Setten, Jessica; Bots, Michiel L.; Vaartjes, Ilonca; Broderick, Joseph; Woo, Daniel; Foroud, Tatiana; Rinkel, Gabriel J.E.; de Bakker, Paul I.W.; Ruigrok, Ynte M.; Medical and Molecular Genetics, School of Medicine
    Objective: To investigate to what extent low-frequency genetic variants (with minor allele frequencies <5%) affect the risk of intracranial aneurysms (IAs). Methods: One thousand fifty-six patients with IA and 2,097 population-based controls from the Netherlands were genotyped with the Illumina HumanExome BeadChip. After quality control (QC) of samples and single nucleotide variants (SNVs), we conducted a single variant analysis using the Fisher exact test. We also performed the variable threshold (VT) test and the sequence kernel association test (SKAT) at different minor allele count (MAC) thresholds of >5 and >0 to test the hypothesis that multiple variants within the same gene are associated with IA risk. Significant results were tested in a replication cohort of 425 patients with IA and 311 controls, and results of the 2 cohorts were combined in a meta-analysis. Results: After QC, 995 patients with IA and 2,080 controls remained for further analysis. The single variant analysis comprising 46,534 SNVs did not identify significant loci at the genome-wide level. The gene-based tests showed a statistically significant association for fibulin 2 (FBLN2) (best p = 1 × 10-6 for the VT test, MAC >5). Associations were not statistically significant in the independent but smaller replication cohort (p > 0.57) but became slightly stronger in a meta-analysis of the 2 cohorts (best p = 4.8 × 10-7 for the SKAT, MAC ≥1). Conclusion: Gene-based tests indicated an association for FBLN2, a gene encoding an extracellular matrix protein implicated in vascular wall remodeling, but independent validation in larger cohorts is warranted. We did not identify any significant associations for single low-frequency genetic variants.
  • Loading...
    Thumbnail Image
    Item
    Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7
    (Ovid Technologies Wolters Kluwer – American Heart Association, 2014-11) Foroud, Tatiana; Lai, Dongbing; Koller, Daniel; van’t Hof, Femke; Kurki, Mitja I.; Anderson, Craig S.; Brown, Robert D.; Connolly, E. Sander; Eriksson, Johan G.; Flaherty, Matthew; Fornage, Myriam; von und zuFraunberg, Mikael; Gaál, Emília I.; Laakso, Aki; Hernesniemi, Juha; Huston, John; Jääskeläinen, Juha E.; Kiemeney, Lambertus A.; Kivisaari, Riku; Kleindorfer, Dawn; Ko, Nerissa; Lehto, Hanna; Mackey, Jason; Meissner, Irene; Moomaw, Charles J.; Mosley, Thomas H.; Moskala, Marek; Niemelä, Mika; Palotie, Aarno; Pera, Joanna; Rinkel, Gabriel; Ripke, Stephan; Rouleau, Guy; Ruigrok, Ynte; Sauerbeck, Laura; Słowik, Agnieszka; Vermeulen, Sita H.; Woo, Daniel; Worrall, Bradford B.; Broderick, Joseph; Department of Medical & Molecular Genetics, IU School of Medicine
    BACKGROUND AND PURPOSE: Common variants have been identified using genome-wide association studies which contribute to intracranial aneurysms (IA) susceptibility. However, it is clear that the variants identified to date do not account for the estimated genetic contribution to disease risk. METHODS: Initial analysis was performed in a discovery sample of 2617 IA cases and 2548 controls of white ancestry. Novel chromosomal regions meeting genome-wide significance were further tested for association in 2 independent replication samples: Dutch (717 cases; 3004 controls) and Finnish (799 cases; 2317 controls). A meta-analysis was performed to combine the results from the 3 studies for key chromosomal regions of interest. RESULTS: Genome-wide evidence of association was detected in the discovery sample on chromosome 9 (CDKN2BAS; rs10733376: P<1.0×10(-11)), in a gene previously associated with IA. A novel region on chromosome 7, near HDAC9, was associated with IA (rs10230207; P=4.14×10(-8)). This association replicated in the Dutch sample (P=0.01) but failed to show association in the Finnish sample (P=0.25). Meta-analysis results of the 3 cohorts reached statistical significant (P=9.91×10(-10)). CONCLUSIONS: We detected a novel region associated with IA susceptibility that was replicated in an independent Dutch sample. This region on chromosome 7 has been previously associated with ischemic stroke and the large vessel stroke occlusive subtype (including HDAC9), suggesting a possible genetic link between this stroke subtype and IA.
  • Loading...
    Thumbnail Image
    Item
    Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm
    (PLoS, 2015-03-24) Farlow, Janice L.; Lin, Hai; Sauerbeck, Laura; Lai, Dongbing; Koller, Daniel L.; Pugh, Elizabeth; Hetrick, Kurt; Ling, Hua; Kleinloog, Rachel; van der Vlies, Peter; Deelen, Patrick; Swertz, Morris A.; Verweij, Bon H.; Regli, Luca; Rinkel, Gabriel J.E.; Ruigrok, Ynte M.; Doheny, Kimberly; Liu, Yunlong; Broderick, Joseph; Foroud, Tatiana; Department of Medical and Molecular Genetics, IU School of Medicine
    Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.
  • Loading...
    Thumbnail Image
    Item
    PRIORITIZATION OF RESULTS FROM WHOLE EXOME SEQUENCING IN FAMILIAL INTRACRANIAL ANEURYSM
    (Office of the Vice Chancellor for Research, 2012-04-13) Farlow, Janice L.; Lin, Hai; Hetrick, Kurt; Ling, Hua; Lai, Dongbing; Sauerbeck, Laura; Woo, Daniel; Langefeld, Carl; Brown, Robert; Pugh, Elizabeth; Doheny, Kimberly; Liu, Yunlong; Foroud, Tatiana; Broderick, Joseph; Foroud, Tatiana
    Whole exome sequencing (WES) is an innovative approach to identifying rare variants associated with disease; however, reducing the large number of variants to a useful set of candidate genes is challenging. We developed a ranking system utilizing data from a previous genome-wide linkage analysis and various bioinformatics databases to prioritize the results of WES from families having multiple members with intracranial aneurysms. WES was performed in 35 affected individuals and 10 unaffected individ-uals across 7 families. All samples were genotyped (Illumina® OmniExpress) and sequenced (Agilent© SureSelect™ 50Mb Human All Exon Kit). Linkage analysis (Illumina 6K) was previously performed using autosomal domi-nant/recessive modes of inheritance. Application of quality filters resulted in 91,659 single nucleotide variants (SNVs). Nonsynonymous SNVs within an exon having an allele frequency of <3% were retained. Further filtering was performed based on Mendelian in-heritance (autosomal dominant or recessive). A ranking system prioritized retained variants based on the inheritance pattern specific to each family, occurrence in multiple families, relation to pathways and genes of interest, degree of penetrance, presence within a linkage peak, and whether the re-sultant proteins were predicted to be deleterious. Out of a 9-point score, 292 variants in 190 genes received scores of at least 5. Of these, 14 variants in 10 genes met the majority of prioritization criteria by achieving scores of over 7. While several WES studies have been successful at identifying genes im-portant to rare diseases, few have examined how to produce a list of candi-date genes contributing to a complex disease from WES data. We show that a ranking system that combines WES with bioinformatics resources and link-age data is a powerful approach to prioritize candidate genes for a complex disease like familial intracranial aneurysms. Subsequent studies are required to validate the utility of this approach.
  • Loading...
    Thumbnail Image
    Item
    Screening for brain aneurysm in the Familial Intracranial Aneurysm study: frequency and predictors of lesion detection
    (Journal of Neurosurgery Publishing Group (JNSPG), 2008-06) Brown, Robert D., Jr.; Huston, John, III; Hornung, Richard; Foroud, Tatiana; Kallmes, David F.; Kleindorfer, Dawn; Meissner, Irene; Woo, Daniel; Sauerbeck, Laura; Broderick, Joseph; Department of Medical & Molecular Genetics, School of Medicine,
    Object Approximately 20% of patients with an intracranial saccular aneurysm report a family history of intracranial aneurysm (IA) or subarachnoid hemorrhage. A better understanding of predictors of aneurysm detection in familial IA may allow more targeted aneurysm screening strategies. Methods The Familial Intracranial Aneurysm (FIA) study is a multicenter study, in which the primary objective is to define the susceptibility genes related to the formation of IA. First-degree relatives (FDRs) of those affected with IA are offered screening with magnetic resonance (MR) angiography if they were previously unaffected, are ≥ 30 years of age, and have a history of smoking and/or hypertension. Independent predictors of aneurysm detection on MR angiography were determined using the generalized estimating equation version of logistic regression. Results Among the first 303 patients screened with MR angiography, 58 (19.1%) had at least 1 IA, including 24% of women and 11.7% of men. Ten (17.2%) of 58 affected patients had multiple aneurysms. Independent predictors of aneurysm detection included female sex (odds ratio [OR] 2.46, p = 0.001), pack-years of cigarette smoking (OR 3.24 for 20 pack-years of cigarette smoking compared with never having smoked, p < 0.001), and duration of hypertension (OR 1.26 comparing those with 10 years of hypertension to those with no hypertension, p = 0.006). Conclusions In the FIA study, among the affected patients’ FDRs who are > 30 years of age, those who are women or who have a history of smoking or hypertension are at increased risk of suffering an IA and should be strongly considered for screening.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University