- Browse by Author
Browsing by Author "Brendel, Volker P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Flexible analysis of TSS mapping data and detection of TSS shifts with TSRexploreR(Oxford University Press, 2021-06) Policastro, Robert A.; McDonald, Daniel J.; Brendel, Volker P.; Zentner, Gabriel E.; Biology, School of ScienceHeterogeneity in transcription initiation has important consequences for transcript stability and translation, and shifts in transcription start site (TSS) usage are prevalent in various developmental, metabolic, and disease contexts. Accordingly, numerous methods for global TSS profiling have been developed, including most recently Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a method to profile transcription start sites (TSSs) on a genome-wide scale with significant cost and time savings compared to previous methods. In anticipation of more widespread adoption of STRIPE-seq and related methods for construction of promoter atlases and studies of differential gene expression, we built TSRexploreR, an R package for end-to-end analysis of TSS mapping data. TSRexploreR provides functions for TSS and transcription start region (TSR) detection, normalization, correlation, visualization, and differential TSS/TSR analyses. TSRexploreR is highly interoperable, accepting the data structures of TSS and TSR sets generated by several existing tools for processing and alignment of TSS mapping data, such as CAGEr for Cap Analysis of Gene Expression (CAGE) data. Lastly, TSRexploreR implements a novel approach for the detection of shifts in TSS distribution.Item Simple and efficient profiling of transcription initiation and transcript levels with STRIPE-seq(CSHL Press, 2020-06) Policastro, Robert A.; Raborn, R. Taylor; Brendel, Volker P.; Zentner, Gabriel E.; Biology, School of ScienceAccurate mapping of transcription start sites (TSSs) is key for understanding transcriptional regulation. However, current protocols for genome-wide TSS profiling are laborious and/or expensive. We present Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a simple, rapid, and cost-effective protocol for sequencing capped RNA 5' ends from as little as 50 ng total RNA. Including depletion of uncapped RNA and reaction cleanups, a STRIPE-seq library can be constructed in about 5 h. We show application of STRIPE-seq to TSS profiling in yeast and human cells and show that it can also be effectively used for quantification of transcript levels and analysis of differential gene expression. In conjunction with our ready-to-use computational workflows, STRIPE-seq is a straightforward, efficient means by which to probe the landscape of transcriptional initiation.