- Browse by Author
Browsing by Author "Brauner, Barbara"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Multi-Omic analyses characterize the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease(Springer Nature, 2022-10-08) Baloni, Priyanka; Arnold, Matthias; Buitrago, Luna; Nho, Kwangsik; Moreno, Herman; Huynh, Kevin; Brauner, Barbara; Louie, Gregory; Kueider-Paisley, Alexandra; Suhre, Karsten; Saykin, Andrew J.; Ekroos, Kim; Meikle, Peter J.; Hood, Leroy; Price, Nathan D.; The Alzheimer’s Disease Metabolomics Consortium; Doraiswamy, P. Murali; Funk, Cory C.; Hernández, A. Iván; Kastenmüller, Gabi; Baillie, Rebecca; Han, Xianlin; Kaddurah-Daouk, Rima; Radiology and Imaging Sciences, School of MedicineDysregulation of sphingomyelin and ceramide metabolism have been implicated in Alzheimer's disease. Genome-wide and transcriptome-wide association studies have identified various genes and genetic variants in lipid metabolism that are associated with Alzheimer's disease. However, the molecular mechanisms of sphingomyelin and ceramide disruption remain to be determined. We focus on the sphingolipid pathway and carry out multi-omics analyses to identify central and peripheral metabolic changes in Alzheimer's patients, correlating them to imaging features. Our multi-omics approach is based on (a) 2114 human post-mortem brain transcriptomics to identify differentially expressed genes; (b) in silico metabolic flux analysis on context-specific metabolic networks identified differential reaction fluxes; (c) multimodal neuroimaging analysis on 1576 participants to associate genetic variants in sphingomyelin pathway with Alzheimer's disease pathogenesis; (d) plasma metabolomic and lipidomic analysis to identify associations of lipid species with dysregulation in Alzheimer's; and (e) metabolite genome-wide association studies to define receptors within the pathway as a potential drug target. We validate our hypothesis in amyloidogenic APP/PS1 mice and show prolonged exposure to fingolimod alleviated synaptic plasticity and cognitive impairment in mice. Our integrative multi-omics approach identifies potential targets in the sphingomyelin pathway and suggests modulators of S1P metabolism as possible candidates for Alzheimer's disease treatment.Item Sex and APOE ε4 genotype modify the Alzheimer’s disease serum metabolome(Springer Nature, 2020) Arnold, Matthias; Nho, Kwangsik; Kueider-Paisley, Alexandra; Massaro, Tyler; Huynh, Kevin; Brauner, Barbara; MahmoudianDehkordi, Siamak; Louie, Gregory; Moseley, M. Arthur; Thompson, J. Will; St. John-Williams, Lisa; Tenenbaum, Jessica D.; Blach, Colette; Chang, Rui; Brinton, Roberta D.; Baillie, Rebecca; Han, Xianlin; Trojanowski, John Q.; Shaw, Leslie M.; Martins, Ralph; Weiner, Michael W.; Trushina, Trushina; Toledo, Jon B.; Meikle, Peter J.; Bennett, David A.; Krumsiek, Jan; Doraiswamy, P. Murali; Saykin, Andrew J.; Kaddurah-Daouk, Rima; Kastenmüller, Gabi; Radiology and Imaging Sciences, School of MedicineLate-onset Alzheimer’s disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers. We observed substantial sex differences in effects of 15 metabolites with partially overlapping differences for APOE ε4 status groups. Several group-specific metabolic alterations were not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification revealed further subgroup-specific metabolic effects limited to APOE ε4+ females. The observed metabolic alterations suggest that females experience greater impairment of mitochondrial energy production than males. Dissecting metabolic heterogeneity in AD pathogenesis can therefore enable grading the biomedical relevance for specific pathways within specific subgroups, guiding the way to personalized medicine.