- Browse by Author
Browsing by Author "Braun, Robert E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inflammation impacts androgen receptor signaling in basal prostate stem cells through interleukin 1 receptor antagonist(Springer Nature, 2024-10-25) Cooper, Paula O.; Yang, Jiang; Wang, Hsing-Hui; Broman, Meaghan M.; Jayasundara, Shyaman Madhawa; Sahoo, Subhransu Sekhar; Yan, Bingyu; Awdalkreem, Gada D.; Cresswell, Gregory M.; Wang, Liang; Goossens, Emery; Lanman, Nadia A.; Doerge, Rebecca W.; Zheng, Faye; Cheng, Liang; Alqahtani, Saeed; Crist, Scott A.; Braun, Robert E.; Kazemian, Majid; Jerde, Travis J.; Ratliff, Timothy L.; Microbiology and Immunology, School of MedicineChronic prostate inflammation in patients with benign prostate hyperplasia (BPH) correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms remain unclear. In this study, we utilize a unique transgenic mouse model that mimics chronic non-bacterial prostatitis in men and investigate the impact of inflammation on androgen receptor (AR) in basal prostate stem cells (bPSC) and their differentiation in vivo. We find that inflammation significantly enhances AR levels and activity in bPSC. More importantly, we identify interleukin 1 receptor antagonist (IL-1RA) as a crucial regulator of AR in bPSC during inflammation. IL-1RA is one of the top molecules upregulated by inflammation, and inhibiting IL-1RA reverses the enhanced AR activity in organoids derived from inflamed bPSC. Additionally, IL-1RA appears to activate AR by counteracting IL-1α's inhibitory effect. Furthermore, using a lineage tracing model, we observe that inflammation induces bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation is sufficient to promote bPSC proliferation and differentiation. Taken together, our study uncovers mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that may contribute to prostate hyperplasia.Item Inflammation Impacts Androgen Receptor Signaling in Basal Prostate Stem Cells Through Interleukin 1 Receptor Antagonist(Research Square, 2023-12-15) Cooper, Paula O.; Yang, Jiang; Wang, Hsing-Hui; Broman, Meaghan M.; Awdalkreem, Gada D.; Cresswell, Gregory M.; Wang, Liang; Goossens, Emery; Lanman, Nadia A.; Doerge, Rebecca W.; Zheng, Faye; Cheng, Liang; Crist, Scott A.; Braun, Robert E.; Jerde, Travis J.; Ratliff, Timothy L.; Pharmacology and Toxicology, School of MedicineThe majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia. After the injection of ovalbumin peptide-specific T cells, POET3 prostates exhibited an influx of inflammatory cells and an increase in pro-inflammatory cytokines that led to epithelial and stromal hyperplasia. We have previously demonstrated with the POET3 model that inflammation expands the basal prostate stem cell (bPSC) population and promotes bPSC differentiation in organoid cultures. In this study, we investigated the mechanisms underlying the impact of inflammation on bPSC. We found that AR activity was enhanced in inflamed bPSC and was essential for bPSC differentiation in organoid cultures. Most importantly, we identified, for the first time, interleukin 1 receptor antagonist (IL-1RA) as a key regulator of AR in basal stem cells. IL-1RA was one of the top genes upregulated by inflammation and inhibition of IL-1RA abrogated the enhanced AR nuclear accumulation and activity in organoids derived from inflamed bPSC. The mirroring effects of IL-1RA recombinant protein and IL-1α neutralizing antibody suggest that IL-1RA may function by antagonizing IL-1α inhibition of AR expression. Furthermore, we established a lineage tracing model to follow bPSC during inflammation and under castrate conditions. We found that inflammation induced bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation in bPSC is sufficient for their proliferation and differentiation under androgen-deprived conditions. However, proliferation of the differentiated bPSC in the luminal layer significantly diminished with castration, suggesting inflammation may not maintain AR activity in stromal cells, as stromal cells deprived of androgen after castration could no longer provide paracrine growth factors essential for luminal proliferation. Taken together, we have discovered novel mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that contributes to prostate hyperplasia.