- Browse by Author
Browsing by Author "Braciale, Thomas J."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item The effector T cell response to influenza infection(Springer, 2015) Hufford, Matthew M.; Kim, Taeg S.; Sun, Jie; Braciale, Thomas J.; Department of Pediatrics, IU School of MedicineInfluenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs.Item Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates hyperinflammation and hyperglycemia in COVID-19(American Association for the Advancement of Science, 2023) Zhu, Bibo; Wei, Xiaoqin; Narasimhan, Harish; Qian, Wei; Zhang, Ruixuan; Cheon, In Su; Wu, Yue; Li, Chaofan; Jones, Russell G.; Kaplan, Mark H.; Vassallo, Robert A.; Braciale, Thomas J.; Somerville, Lindsay; Colca, Jerry R.; Pandey, Akhilesh; Jackson, Patrick E. H.; Mann, Barbara J.; Krawczyk, Connie M.; Sturek, Jeffrey M.; Sun, Jie; Microbiology and Immunology, School of MedicineThe relationship between diabetes and coronavirus disease 2019 (COVID-19) is bidirectional: Although individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyperinflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease after influenza or SARS-CoV-2 pneumonia. MPC inhibition using a second-generation insulin sensitizer, MSDC-0602K (MSDC), dampened pulmonary inflammation and promoted lung recovery while concurrently reducing blood glucose levels and hyperlipidemia after viral pneumonia in obese mice. Mechanistically, MPC inhibition enhanced mitochondrial fitness and destabilized hypoxia-inducible factor-1α, leading to dampened virus-induced inflammatory responses in both murine and human lung macrophages. We further showed that MSDC enhanced responses to nirmatrelvir (the antiviral component of Paxlovid) to provide high levels of protection against severe host disease development after SARS-CoV-2 infection and suppressed cellular inflammation in human COVID-19 lung autopsies, demonstrating its translational potential for treating severe COVID-19. Collectively, we uncover a metabolic pathway that simultaneously modulates pulmonary inflammation, tissue recovery, and host metabolic health, presenting a synergistic therapeutic strategy to treat severe COVID-19, particularly in patients with underlying metabolic disease.Item Regulating the adaptive immune response to respiratory virus infection(Springer Nature, 2012) Braciale, Thomas J.; Sun, Jie; Kim, Taeg S.; Pediatrics, IU School of MedicineRecent years have seen several advances in our understanding of immunity to virus infection of the lower respiratory tract, including to influenza virus infection. Here, we review the cellular targets of viruses and the features of the host immune response that are unique to the lungs. We describe the interplay between innate and adaptive immune cells in the induction, expression and control of antiviral immunity, and discuss the impact of the infected lung milieu on moulding the response of antiviral effector T cells. Recent findings on the mechanisms that underlie the increased frequency of severe pulmonary bacterial infections following respiratory virus infection are also discussed.Item T Cell Responses during Acute Respiratory Virus Infection(Elsevier, 2016) Kim, Taeg S.; Sun, Jie; Legge, Kevin L.; Braciale, Thomas J.; Pediatrics, School of MedicineThe T cell response is an integral and essential part of the host immune response to acute virus infection. Each viral pathogen has unique, frequently nuanced, aspects to its replication, which affects the host response and as a consequence the capacity of the virus to produce disease. There are, however, common features to the T cell response to viruses, which produce acute limited infection. This is true whether virus replication is restricted to a single site, for example, the respiratory tract (RT), CNS etc., or replication is in multiple sites throughout the body. In describing below the acute T cell response to virus infection, we employ acute virus infection of the RT as a convenient model to explore this process of virus infection and the host response. We divide the process into three phases: the induction (initiation) of the response, the expression of antiviral effector activity resulting in virus elimination, and the resolution of inflammation with restoration of tissue homeostasis.Item Type I interferon signaling facilitates the development of IL-10-producing effector CD8+ T cells during influenza virus infection(Wiley, 2016-12) Jiang, Li; Yao, Shuyu; Huang, Su; Wright, Jeffrey; Braciale, Thomas J.; Sun, Jie; Pediatrics, School of MedicineRecent evidence has suggested that IL-10-producing effector CD8+ T cells play an important role in regulating excessive inflammation during acute viral infections. However, the cellular and molecular cues regulating the development of IL-10-producing effector CD8+ T cells are not completely defined. Here, we show that type I interferons (IFNs) are required for the development of IL-10-producing effector CD8+ T cells during influenza virus infection in mice. We find that type I IFNs can enhance IL-27 production by lung APCs, thereby facilitating IL-10-producing CD8+ T-cell development through a CD8+ T-cell-nonautonomous way. Surprisingly, we also demonstrate that direct type I IFN signaling in CD8+ T cells is required for the maximal generation of IL-10-producing CD8+ T cells. Type I IFN signaling in CD8+ T cells, in cooperation with IL-27 and IL-2 signaling, promotes and sustains the expression of IFN regulatory factor 4 (IRF4) and B-lymphocyte-induced maturation protein-1 (Blimp-1), two transcription factors required for the production of IL-10 by effector CD8+ T cells. Our data reveal a critical role of the innate antiviral effector cytokines in regulating the production of a regulatory cytokine by effector CD8+ T cells during respiratory virus infection.