ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bowen, James M."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A reporter Oropouche virus expressing ZsGreen from the M segment enables pathogenesis studies in mice
    (American Society for Microbiology, 2024) Gunter, Krista; Omoga, Dorcus; Bowen, James M.; Gonzalez, Lorimar Robledo; Severt, Sydney; Davis, Mackenzie; Szymanski, Megan; Sandusky, George; Duprex, W. Paul; Tilston-Lunel, Natasha L.; Microbiology and Immunology, School of Medicine
    Oropouche fever caused by Oropouche virus (OROV) is a significant zoonosis in Central and South America. Despite its public health significance, we lack high-throughput diagnostics, therapeutics, and a comprehensive knowledge of OROV biology. Reporter viruses are valuable tools to rapidly study virus dynamics and develop neutralization and antiviral screening assays. OROV is a tri-segmented bunyavirus, which makes generating a reporter virus challenging, as introducing foreign elements into the viral genome typically affects fitness. We previously demonstrated that the non-structural gene NSm on the OROV medium (M) segment is non-essential for replication in vitro. Taking advantage of this, we have now generated a recombinant OROV expressing fluorescent protein ZsGreen in place of NSm. This reporter OROV is both stable and pathogenic in IFNAR-/- mice and provides a powerful tool for OROV pathogenesis studies and assay development.IMPORTANCEEmerging and reemerging infectious agents such as zoonotic bunyaviruses are of global health concern. Oropouche virus (OROV) causes recurring outbreaks of acute febrile illness in the Central and South American human populations. Biting midges are the primary transmission vectors, whereas sloths and non-human primates are their reservoir hosts. As global temperatures increase, we will likely see an expansion in arthropod-borne pathogens such as OROV. Therefore, developing reagents to study pathogen biology to aid in identifying druggable targets is essential. Here, we demonstrate the feasibility and use of a fluorescent OROV reporter in mice to study viral dynamics and pathogenesis. We show that this reporter OROV maintains characteristics such as growth and pathogenicity similar to the wild-type virus. Using this reporter virus, we can now develop methods to assist OROV studies and establish various high-throughput assays.
  • Loading...
    Thumbnail Image
    Item
    Probing orthobunyavirus reassortment using Bunyamwera and Batai viruses as models
    (Public Library of Science, 2025-05-30) Bowen, James M.; Gunter, Krista; Lunel, Andrew M.; Omoga, Dorcus C. A.; Jones, Jennifer E.; Giesel, Henry; Duprex, W. Paul; Tilston, Natasha L.; Microbiology and Immunology, School of Medicine
    Reassortment is a critical evolutionary mechanism for segmented viruses, enabling the exchange of intact genome segments during co-infection and driving orthobunyavirus evolution; however, the molecular mechanisms underpinning this process remain unclear. With over 100 orthobunyavirus species, many of which are significant human and veterinary pathogens, understanding how reassortment influences transmissibility and virulence is essential for preempting the emergence of novel pathogens. Here, we use Bunyamwera virus (BUNV) and Batai virus (BATV) as models to explore orthobunyavirus reassortment through reverse genetics. We established the first reverse genetics system for BATV, generated reassortants, and employed minigenome assays to assess replication machinery compatibility. Additionally, we developed a novel hybridization chain reaction assay for high-resolution visualization of viral RNA segments. Our findings revealed that all six reassortants between BUNV and BATV are viable, exhibiting notable phenotypic differences in interferon-deficient (IFNAR-/-) mice. This work introduces essential tools and new insights into orthobunyavirus reassortment and pathogenesis, laying the groundwork for understanding this critical evolutionary process.
  • Loading...
    Thumbnail Image
    Item
    Type-2 diabetes mellitus enhances Klebsiella pneumoniae pathogenesis
    (bioRxiv, 2024-05-31) Todd, Katlyn; Gunter, Krista; Bowen, James M.; Holmes, Caitlyn L.; Tilston-Lunel, Natasha L.; Vornhagen, Jay; Microbiology and Immunology, School of Medicine
    Klebsiella pneumoniae is an opportunistic pathogen and an important cause of pneumonia, bacteremia, and urinary tract infection. K. pneumoniae infections are historically associated with diabetes mellitus. There is a fundamental gap in our understanding of how diabetes mellitus, specifically type 2 diabetes, influences K. pneumoniae pathogenesis. K. pneumoniae pathogenesis is a multifactorial process that often begins with gut colonization, followed by an escape from the gut to peripheral sites, leading to host damage and infection. We hypothesized that type 2 diabetes enhances K. pneumoniae pathogenesis. To test this, we used well-established mouse models of K. pneumoniae colonization and lung infection in conjunction with a mouse model of spontaneous type 2 diabetes mellitus (T2DM). We show that T2DM enhances susceptibility to both K. pneumoniae colonization and infection. The enhancement of gut colonization is dependent on T2DM-induced modulation of the gut microbiota community structure. In contrast, lung infection is exacerbated by the increased availability of amino acids in the lung, which is associated with higher levels of vascular endothelial growth factor. These data lay the foundation for mechanistic interrogation of the relationship between K. pneumoniae pathogenesis and type 2 diabetes mellitus, and explicitly establish T2DM as a risk factor for K. pneumoniae disease.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University