ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Boutros, Paul C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Best practices to evaluate the impact of biomedical research software-metric collection beyond citations
    (Oxford University Press, 2024) Afiaz, Awan; Ivanov, Andrey A.; Chamberlin, John; Hanauer, David; Savonen, Candace L.; Goldman, Mary J.; Morgan, Martin; Reich, Michael; Getka, Alexander; Holmes, Aaron; Pati, Sarthak; Knight, Dan; Boutros, Paul C.; Bakas, Spyridon; Caporaso, J. Gregory; Del Fiol, Guilherme; Hochheiser, Harry; Haas, Brian; Schloss, Patrick D.; Eddy, James A.; Albrecht, Jake; Fedorov, Andrey; Waldron, Levi; Hoffman, Ava M.; Bradshaw, Richard L.; Leek, Jeffrey T.; Wright, Carrie; Pathology and Laboratory Medicine, School of Medicine
    Motivation: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite challenges with improper citation. Results: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We found that although developers realize the value of more extensive metric collection, they find a lack of funding and time hindering. We also investigated software among this community for how often infrastructure that supports more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, justify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software's impact. Challenges are associated, including distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spectrum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress. Availability and implementation: More information about the analysis, as well as access to data and code is available at https://github.com/fhdsl/ITCR_Metrics_manuscript_website.
  • Loading...
    Thumbnail Image
    Item
    Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER
    (Nature Publishing Group, 2014-10-29) van den Beucken, Twan; Koch, Elizabeth; Chu, Kenneth; Rupaimoole, Rajesha; Prickaerts, Peggy; Adriaens, Michiel; Voncken, Jan Willem; Harris, Adrian L.; Buffa, Francesca M.; Haider, Syed; Starmans, Maud H. W.; Yao, Cindy Q.; Ivan, Mircea; Ivan, Cristina; Pecot, Chad V.; Boutros, Paul C.; Sood, Anil K.; Koritzinsky, Marianne; Wouters, Bradly G.; Department of Medicine, IU School of Medicine
    MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University