- Browse by Author
Browsing by Author "Bottini, Nunzio"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A potent and selective small molecule inhibitor for the lymphoid-specific tyrosine phosphatase (LYP), a target associated with autoimmune diseases(ACS, 2013) He, Yantao; Liu, Sijiu; Menon, Ambili; Stanford, Stephanie; Oppong, Emmanuel; Gunawan, Andrea M.; Wu, Li; Wu, Dennis J.; Barrios, Amy M.; Bottini, Nunzio; Cato, Andrew C. B.; Zhang, Zhong-Yin; Biochemistry and Molecular Biology, School of MedicineLymphoid-specific tyrosine phosphatase (LYP), a member of the protein tyrosine phosphatase (PTP) family of signaling enzymes, is associated with a broad spectrum of autoimmune diseases. Herein we describe our structure-based lead optimization efforts within a 6-hydroxy-benzofuran-5-carboxylic acid series culminating in the identification of compound 8b, a potent and selective inhibitor of LYP with a K(i) value of 110 nM and more than 9-fold selectivity over a large panel of PTPs. The structure of LYP in complex with 8b was obtained by X-ray crystallography, providing detailed information about the molecular recognition of small-molecule ligands binding LYP. Importantly, compound 8b possesses highly efficacious cellular activity in both T- and mast cells and is capable of blocking anaphylaxis in mice. Discovery of 8b establishes a starting point for the development of clinically useful LYP inhibitors for treating a wide range of autoimmune disorders.Item Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation(American Society for Clinical Investigation, 2016-05-19) Maeshima, Keisuke; Stanford, Stephanie M.; Hammaker, Deepa; Sacchetti, Cristiano; Zeng, Li-Fan; Ai, Rizi; Zhang, Vida; Boyle, David L.; Aleman Muench, German R.; Feng, Gen-Sheng; Whitaker, John W.; Zhang, Zhong-Yin; Wang, Wei; Bottini, Nunzio; Firestein, Gary S.; Department of Biochemistry & Molecular Biology, IU School of MedicineThe PTPN11 gene, encoding the tyrosine phosphatase SHP-2, is overexpressed in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) compared with osteoarthritis (OA) FLS and promotes RA FLS invasiveness. Here, we explored the molecular basis for PTPN11 overexpression in RA FLS and the role of SHP-2 in RA pathogenesis. Using computational methods, we identified a putative enhancer in PTPN11 intron 1, which contained a glucocorticoid receptor- binding (GR-binding) motif. This region displayed enhancer function in RA FLS and contained 2 hypermethylation sites in RA compared with OA FLS. RA FLS stimulation with the glucocorticoid dexamethasone induced GR binding to the enhancer and PTPN11 expression. Glucocorticoid responsiveness of PTPN11 was significantly higher in RA FLS than OA FLS and required the differentially methylated CpGs for full enhancer function. SHP-2 expression was enriched in the RA synovial lining, and heterozygous Ptpn11 deletion in radioresistant or innate immune cells attenuated K/BxN serum transfer arthritis in mice. Treatment with SHP-2 inhibitor 11a-1 reduced RA FLS migration and responsiveness to TNF and IL-1β stimulation and reduced arthritis severity in mice. Our findings demonstrate how abnormal epigenetic regulation of a pathogenic gene determines FLS behavior and demonstrate that targeting SHP-2 or the SHP-2 pathway could be a therapeutic strategy for RA.