- Browse by Author
Browsing by Author "Bots, Michiel L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Exome-chip association analysis of intracranial aneurysms(American Academy of Neurology, 2020-02-04) van 't Hof, Femke N.G.; Lai, Dongbing; van Setten, Jessica; Bots, Michiel L.; Vaartjes, Ilonca; Broderick, Joseph; Woo, Daniel; Foroud, Tatiana; Rinkel, Gabriel J.E.; de Bakker, Paul I.W.; Ruigrok, Ynte M.; Medical and Molecular Genetics, School of MedicineObjective: To investigate to what extent low-frequency genetic variants (with minor allele frequencies <5%) affect the risk of intracranial aneurysms (IAs). Methods: One thousand fifty-six patients with IA and 2,097 population-based controls from the Netherlands were genotyped with the Illumina HumanExome BeadChip. After quality control (QC) of samples and single nucleotide variants (SNVs), we conducted a single variant analysis using the Fisher exact test. We also performed the variable threshold (VT) test and the sequence kernel association test (SKAT) at different minor allele count (MAC) thresholds of >5 and >0 to test the hypothesis that multiple variants within the same gene are associated with IA risk. Significant results were tested in a replication cohort of 425 patients with IA and 311 controls, and results of the 2 cohorts were combined in a meta-analysis. Results: After QC, 995 patients with IA and 2,080 controls remained for further analysis. The single variant analysis comprising 46,534 SNVs did not identify significant loci at the genome-wide level. The gene-based tests showed a statistically significant association for fibulin 2 (FBLN2) (best p = 1 × 10-6 for the VT test, MAC >5). Associations were not statistically significant in the independent but smaller replication cohort (p > 0.57) but became slightly stronger in a meta-analysis of the 2 cohorts (best p = 4.8 × 10-7 for the SKAT, MAC ≥1). Conclusion: Gene-based tests indicated an association for FBLN2, a gene encoding an extracellular matrix protein implicated in vascular wall remodeling, but independent validation in larger cohorts is warranted. We did not identify any significant associations for single low-frequency genetic variants.Item Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci(Springer Nature, 2019-01-07) Erzurumluoglu, A. Mesut; Liu, Mengzhen; Jackson, Victoria E.; Barnes, Daniel R.; Datta, Gargi; Melbourne, Carl A.; Young, Robin; Batini, Chiara; Surendran, Praveen; Jiang, Tao; Adnan, Sheikh Daud; Afaq, Saima; Agrawal, Arpana; Altmaier, Elisabeth; Antoniou, Antonis C.; Asselbergs, Folkert W.; Baumbach, Clemens; Bierut, Laura; Bertelsen, Sarah; Boehnke, Michael; Bots, Michiel L.; Brazel, David M.; Chambers, John C.; Chang-Claude, Jenny; Chen, Chu; Corley, Janie; Chou, Yi-Ling; David, Sean P.; Boer, Rudolf A. de; Leeuw, Christiaan A. de; Dennis, Joe G.; Dominiczak, Anna F.; Dunning, Alison M.; Easton, Douglas F.; Eaton, Charles; Elliott, Paul; Evangelou, Evangelos; Faul, Jessica D.; Foroud, Tatiana; Goate, Alison; Gong, Jian; Grabe, Hans J.; Haessler, Jeff; Haiman, Christopher; Hallmans, Göran; Hammerschlag, Anke R.; Harris, Sarah E.; Hattersley, Andrew; Heath, Andrew; Hsu, Chris; Iacono, William G.; Kanoni, Stavroula; Kapoor, Manav; Kaprio, Jaakko; Kardia, Sharon L.; Karpe, Fredrik; Kontto, Jukka; Kooner, Jaspal S.; Kooperberg, Charles; Kuulasmaa, Kari; Laakso, Markku; Lai, Dongbing; Langenberg, Claudia; Le, Nhung; Lettre, Guillaume; Loukola, Anu; Luan, Jian’an; Madden, Pamela A. F.; Mangino, Massimo; Marioni, Riccardo E.; Marouli, Eirini; Marten, Jonathan; Martin, Nicholas G.; McGue, Matt; Michailidou, Kyriaki; Mihailov, Evelin; Moayyeri, Alireza; Moitry, Marie; Müller-Nurasyid, Martina; Naheed, Aliya; Nauck, Matthias; Neville, Matthew J.; Nielsen, Sune Fallgaard; North, Kari; Perola, Markus; Pharoah, Paul D. P.; Pistis, Giorgio; Polderman, Tinca J.; Posthuma, Danielle; Poulter, Neil; Qaiser, Beenish; Rasheed, Asif; Reiner, Alex; Renström, Frida; Rice, John; Rohde, Rebecca; Rolandsson, Olov; Samani, Nilesh J.; Samuel, Maria; Schlessinger, David; Scholte, Steven H.; Scott, Robert A.; Sever, Peter; Shao, Yaming; Shrine, Nick; Smith, Jennifer A.; Starr, John M.; Stirrups, Kathleen; Stram, Danielle; Stringham, Heather M.; Tachmazidou, Ioanna; Tardif, Jean-Claude; Thompson, Deborah J.; Tindle, Hilary A.; Tragante, Vinicius; Trompet, Stella; Turcot, Valerie; Tyrrell, Jessica; Vaartjes, Ilonca; Leij, Andries R. van der; Meer, Peter van der; Varga, Tibor V.; Verweij, Niek; Völzke, Henry; Wareham, Nicholas J.; Warren, Helen R.; Weir, David R.; Weiss, Stefan; Wetherill, Leah; Yaghootkar, Hanieh; Yavas, Ersin; Jiang, Yu; Chen, Fang; Zhan, Xiaowei; Zhang, Weihua; Zhao, Wei; Zhao, Wei; Zhou, Kaixin; Amouyel, Philippe; Blankenberg, Stefan; Caulfield, Mark J.; Chowdhury, Rajiv; Cucca, Francesco; Deary, Ian J.; Deloukas, Panos; Angelantonio, Emanuele Di; Ferrario, Marco; Ferrières, Jean; Franks, Paul W.; Frayling, Tim M.; Frossard, Philippe; Hall, Ian P.; Hayward, Caroline; Jansson, Jan-Håkan; Jukema, J. Wouter; Kee, Frank; Männistö, Satu; Metspalu, Andres; Munroe, Patricia B.; Nordestgaard, Børge Grønne; Palmer, Colin N. A.; Salomaa, Veikko; Sattar, Naveed; Spector, Timothy; Strachan, David Peter; Harst, Pim van der; Zeggini, Eleftheria; Saleheen, Danish; Butterworth, Adam S.; Wain, Louise V.; Abecasis, Goncalo R.; Danesh, John; Tobin, Martin D.; Vrieze, Scott; Liu, Dajiang J.; Howson, Joanna M. M.; Medical and Molecular Genetics, School of MedicineSmoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10−8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10−8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10−3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.